These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 14559013)

  • 1. Bone generation on PHBV matrices: an in vitro study.
    Köse GT; Korkusuz F; Korkusuz P; Purali N; Ozkul A; Hasirci V
    Biomaterials; 2003 Dec; 24(27):4999-5007. PubMed ID: 14559013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macroporous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrices for bone tissue engineering.
    Köse GT; Kenar H; Hasirci N; Hasirci V
    Biomaterials; 2003 May; 24(11):1949-58. PubMed ID: 12615485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) based tissue engineering matrices.
    Köse GT; Ber S; Korkusuz F; Hasirci V
    J Mater Sci Mater Med; 2003 Feb; 14(2):121-6. PubMed ID: 15348483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo tissue engineering of bone using poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) and collagen scaffolds.
    Köse GT; Korkusuz F; Korkusuz P; Hasirci V
    Tissue Eng; 2004; 10(7-8):1234-50. PubMed ID: 15363179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro.
    Akay G; Birch MA; Bokhari MA
    Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PHBV wet-spun scaffold coated with ELR-REDV improves vascularization for bone tissue engineering.
    Alagoz AS; Rodriguez-Cabello JC; Hasirci V
    Biomed Mater; 2018 Jul; 13(5):055010. PubMed ID: 29974870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) supports in vitro osteogenesis.
    Kumarasuriyar A; Jackson RA; Grøndahl L; Trau M; Nurcombe V; Cool SM
    Tissue Eng; 2005; 11(7-8):1281-95. PubMed ID: 16144464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions.
    Tong HW; Wang M; Lu WW
    J Biomater Sci Polym Ed; 2012; 23(6):779-806. PubMed ID: 21418747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ectopic bone formation in cell-seeded poly(ethylene oxide)/poly(butylene terephthalate) copolymer scaffolds of varying porosity.
    Claase MB; de Bruijn JD; Grijpma DW; Feijen J
    J Mater Sci Mater Med; 2007 Jul; 18(7):1299-307. PubMed ID: 17268874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro biocompatibility assessment of PHBV/Wollastonite composites.
    Li H; Zhai W; Chang J
    J Mater Sci Mater Med; 2008 Jan; 19(1):67-73. PubMed ID: 17577632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of perfusion culture system improves in vitro and in vivo osteogenesis of bone marrow-derived osteoblastic cells in porous ceramic materials.
    Wang Y; Uemura T; Dong J; Kojima H; Tanaka J; Tateishi T
    Tissue Eng; 2003 Dec; 9(6):1205-14. PubMed ID: 14670108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue engineered cartilage on collagen and PHBV matrices.
    Köse GT; Korkusuz F; Ozkul A; Soysal Y; Ozdemir T; Yildiz C; Hasirci V
    Biomaterials; 2005 Sep; 26(25):5187-97. PubMed ID: 15792546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the biological responses of osteoblast-like UMR-106 cells to the engineered porous PHBV matrix.
    Liu H; Raghavan D; Stubbs J
    J Biomed Mater Res A; 2007 Jun; 81(3):669-77. PubMed ID: 17187385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatibility of bioresorbable poly(L-lactic acid) composite scaffolds obtained by supercritical gas foaming with human fetal bone cells.
    Montjovent MO; Mathieu L; Hinz B; Applegate LL; Bourban PE; Zambelli PY; Månson JA; Pioletti DP
    Tissue Eng; 2005; 11(11-12):1640-9. PubMed ID: 16411809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun nanostructured scaffolds for bone tissue engineering.
    Prabhakaran MP; Venugopal J; Ramakrishna S
    Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue engineered bone formation using chitosan/tricalcium phosphate sponges.
    Lee YM; Park YJ; Lee SJ; Ku Y; Han SB; Choi SM; Klokkevold PR; Chung CP
    J Periodontol; 2000 Mar; 71(3):410-7. PubMed ID: 10776928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of micro-roughening of poly(ether ether ketone) on bone marrow derived stem cell and macrophage responses, and osseointegration.
    Sunarso ; Tsuchiya A; Fukuda N; Toita R; Tsuru K; Ishikawa K
    J Biomater Sci Polym Ed; 2018 Aug; 29(12):1375-1388. PubMed ID: 29661104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaffold preferences of mesenchymal stromal cells and adipose-derived stem cells from green fluorescent protein transgenic mice influence the tissue engineering of bone.
    Wittenburg G; Flade V; Garbe AI; Lauer G; Labudde D
    Br J Oral Maxillofac Surg; 2014 May; 52(5):409-14. PubMed ID: 24685477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.