These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 14559419)

  • 1. Determining the minimum sampling rate needed to accurately quantify cumulative spine loading from digitized video.
    Andrews DM; Callaghan JP
    Appl Ergon; 2003 Nov; 34(6):589-95. PubMed ID: 14559419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An evaluation of predictive methods for estimating cumulative spinal loading.
    Callaghan JP; Salewytsch AJ; Andrews DM
    Ergonomics; 2001 Jul; 44(9):825-37. PubMed ID: 11560364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in spine loading patterns throughout the workday as a function of experience, lift frequency, and personality.
    Chany AM; Parakkat J; Yang G; Burr DL; Marras WS
    Spine J; 2006; 6(3):296-305. PubMed ID: 16651224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of an EMG-based method for continuous estimates of low back compression during asymmetrical occupational tasks.
    Mientjes MI; Norman RW; Wells RP; McGill SM
    Ergonomics; 1999 Jun; 42(6):868-79. PubMed ID: 10340027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relation between spinal load factors and the high-risk probability of occupational low-back disorder.
    Granata KP; Marras WS
    Ergonomics; 1999 Sep; 42(9):1187-99. PubMed ID: 10503053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spine loading as a function of lift frequency, exposure duration, and work experience.
    Marras WS; Parakkat J; Chany AM; Yang G; Burr D; Lavender SA
    Clin Biomech (Bristol, Avon); 2006 May; 21(4):345-52. PubMed ID: 16310299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of cumulative low back loads of caregivers when transferring patients using overhead and floor mechanical lifting devices.
    Santaguida PL; Pierrynowski M; Goldsmith C; Fernie G
    Clin Biomech (Bristol, Avon); 2005 Nov; 20(9):906-16. PubMed ID: 16054280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal loads during individual and team lifting.
    Dennis GJ; Barrett RS
    Ergonomics; 2002 Aug; 45(10):671-81. PubMed ID: 12437851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of instantaneous and cumulative loads on the low back and neck in orthodontists.
    Newell TM; Kumar S
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):130-7. PubMed ID: 15621316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating reduced bag weight as an effective risk mediator for mason tenders.
    Davis KG; Kotowski SE; Albers J; Marras WS
    Appl Ergon; 2010 Oct; 41(6):822-31. PubMed ID: 20206915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spine loading during asymmetric lifting using one versus two hands.
    Marras WS; Davis KG
    Ergonomics; 1998 Jun; 41(6):817-34. PubMed ID: 9629066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inter- and intra-observer reliability of calculating cumulative lumbar spine loads.
    Sullivan D; Bryden P; Callaghan JP
    Ergonomics; 2002 Sep; 45(11):788-97. PubMed ID: 12487691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A validation of a posture matching approach for the determination of 3D cumulative back loads.
    Sutherland CA; Albert WJ; Wrigley AT; Callaghan JP
    Appl Ergon; 2008 Mar; 39(2):199-208. PubMed ID: 17586458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lumbosacral compression in maximal lifting efforts in sagittal plane with varying mechanical disadvantage in isometric and isokinetic modes.
    Kumar S
    Ergonomics; 1994 Dec; 37(12):1975-83. PubMed ID: 7828579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous assessment of low back loads in long-term care nurses.
    Holmes MW; Hodder JN; Keir PJ
    Ergonomics; 2010 Sep; 53(9):1108-16. PubMed ID: 20737336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of lift frequency, lift duration and work experience on discomfort reporting.
    Parakkat J; Yang G; Chany AM; Burr D; Marras WS
    Ergonomics; 2007 Mar; 50(3):396-409. PubMed ID: 17536776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of biomechanical and physiological variables during the determination of maximum acceptable weight of lift.
    Jorgensen MJ; Davis KG; Kirking BC; Lewis KE; Marras WS
    Ergonomics; 1999 Sep; 42(9):1216-32. PubMed ID: 10503055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loading along the lumbar spine as influence by speed, control, load magnitude, and handle height during pushing.
    Marras WS; Knapik GG; Ferguson S
    Clin Biomech (Bristol, Avon); 2009 Feb; 24(2):155-63. PubMed ID: 19111950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of low back moments from video analysis: a validation study.
    Coenen P; Kingma I; Boot CR; Faber GS; Xu X; Bongers PM; van Dieën JH
    J Biomech; 2011 Sep; 44(13):2369-75. PubMed ID: 21784426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.