These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 14559782)

  • 1. Signal processing and flagellar motor switching during phototaxis of Halobacterium salinarum.
    Nutsch T; Marwan W; Oesterhelt D; Gilles ED
    Genome Res; 2003 Nov; 13(11):2406-12. PubMed ID: 14559782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantitative model of the switch cycle of an archaeal flagellar motor and its sensory control.
    Nutsch T; Oesterhelt D; Gilles ED; Marwan W
    Biophys J; 2005 Oct; 89(4):2307-23. PubMed ID: 16192281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the CheY(D10K,Yl00W) Halobacterium salinarum mutant: sensitivity analysis allows choice of parameter to be modified in the phototaxis model.
    del Rosario RC; Staudinger WF; Streif S; Pfeiffer F; Mendoza E; Oesterhelt D
    IET Syst Biol; 2007 Jul; 1(4):207-21. PubMed ID: 17708428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Archaea-specific chemotaxis proteins which interact with the flagellar apparatus.
    Schlesner M; Miller A; Streif S; Staudinger WF; Müller J; Scheffer B; Siedler F; Oesterhelt D
    BMC Microbiol; 2009 Mar; 9():56. PubMed ID: 19291314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The steady-state phase distribution of the motor switch complex model of Halobacterium salinarum.
    del Rosario RC; Diener F; Diener M; Oesterhelt D
    Math Biosci; 2009 Dec; 222(2):117-26. PubMed ID: 19857501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flagellar rotation in the archaeon Halobacterium salinarum depends on ATP.
    Streif S; Staudinger WF; Marwan W; Oesterhelt D
    J Mol Biol; 2008 Dec; 384(1):1-8. PubMed ID: 18786541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A predictive computational model of the kinetic mechanism of stimulus-induced transducer methylation and feedback regulation through CheY in archaeal phototaxis and chemotaxis.
    Streif S; Oesterhelt D; Marwan W
    BMC Syst Biol; 2010 Mar; 4():27. PubMed ID: 20298562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MpcT is the transducer for membrane potential changes in Halobacterium salinarum.
    Koch MK; Oesterhelt D
    Mol Microbiol; 2005 Mar; 55(6):1681-94. PubMed ID: 15752193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoresponses of Halobacterium salinarum to repetitive pulse stimuli.
    Cercignani G; Lucia S; Petracchi D
    Biophys J; 1998 Sep; 75(3):1466-72. PubMed ID: 9726948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An archaeal photosignal-transducing module mediates phototaxis in Escherichia coli.
    Jung KH; Spudich EN; Trivedi VD; Spudich JL
    J Bacteriol; 2001 Nov; 183(21):6365-71. PubMed ID: 11591681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of methylation sites and effects of phototaxis stimuli on transducer methylation in Halobacterium salinarum.
    Perazzona B; Spudich JL
    J Bacteriol; 1999 Sep; 181(18):5676-83. PubMed ID: 10482508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rotation and switching of the flagellar motor assembly in Halobacterium halobium.
    Marwan W; Alam M; Oesterhelt D
    J Bacteriol; 1991 Mar; 173(6):1971-7. PubMed ID: 2002000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppressor mutation analysis of the sensory rhodopsin I-transducer complex: insights into the color-sensing mechanism.
    Jung KH; Spudich JL
    J Bacteriol; 1998 Apr; 180(8):2033-42. PubMed ID: 9555883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor torque measurement of
    Iwata S; Kinosita Y; Uchida N; Nakane D; Nishizaka T
    Commun Biol; 2019; 2():199. PubMed ID: 31149643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational spread in the flagellar motor switch: a model study.
    Ma Q; Nicolau DV; Maini PK; Berry RM; Bai F
    PLoS Comput Biol; 2012; 8(5):e1002523. PubMed ID: 22654654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel mode of sensory transduction in archaea: binding protein-mediated chemotaxis towards osmoprotectants and amino acids.
    Kokoeva MV; Storch KF; Klein C; Oesterhelt D
    EMBO J; 2002 May; 21(10):2312-22. PubMed ID: 12006484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial and archaeal flagella as prokaryotic motility organelles.
    Metlina AL
    Biochemistry (Mosc); 2004 Nov; 69(11):1203-12. PubMed ID: 15627373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Blue-Green Sensory Rhodopsin SRM from Haloarcula marismortui Attenuates Both Phototactic Responses Mediated by Sensory Rhodopsin I and II in Halobacterium salinarum.
    Chen JL; Lin YC; Fu HY; Yang CS
    Sci Rep; 2019 Apr; 9(1):5672. PubMed ID: 30952934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of flagellar motor switching by c-di-GMP phosphodiesterases in
    Xin L; Zeng Y; Sheng S; Chea RA; Liu Q; Li HY; Yang L; Xu L; Chiam KH; Liang ZX
    J Biol Chem; 2019 Sep; 294(37):13789-13799. PubMed ID: 31350333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The specificity of interaction of archaeal transducers with their cognate sensory rhodopsins is determined by their transmembrane helices.
    Zhang XN; Zhu J; Spudich JL
    Proc Natl Acad Sci U S A; 1999 Feb; 96(3):857-62. PubMed ID: 9927658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.