These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 14561687)

  • 1. The role of execution noise in movement variability.
    van Beers RJ; Haggard P; Wolpert DM
    J Neurophysiol; 2004 Feb; 91(2):1050-63. PubMed ID: 14561687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interacting noise sources shape patterns of arm movement variability in three-dimensional space.
    Apker GA; Darling TK; Buneo CA
    J Neurophysiol; 2010 Nov; 104(5):2654-66. PubMed ID: 20844108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of execution noise to arm movement variability in three-dimensional space.
    Apker GA; Buneo CA
    J Neurophysiol; 2012 Jan; 107(1):90-102. PubMed ID: 21975450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor learning is optimally tuned to the properties of motor noise.
    van Beers RJ
    Neuron; 2009 Aug; 63(3):406-17. PubMed ID: 19679079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavioral reference frames for planning human reaching movements.
    Beurze SM; Van Pelt S; Medendorp WP
    J Neurophysiol; 2006 Jul; 96(1):352-62. PubMed ID: 16571731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reference frame conversions for repeated arm movements.
    Sorrento GU; Henriques DY
    J Neurophysiol; 2008 Jun; 99(6):2968-84. PubMed ID: 18400956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint angle variability in the time course of reaching movements.
    Krüger M; Eggert T; Straube A
    Clin Neurophysiol; 2011 Apr; 122(4):759-66. PubMed ID: 21030301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Movement variability resulting from different noise sources: a simulation study.
    Shi Y; Buneo CA
    Hum Mov Sci; 2012 Aug; 31(4):772-90. PubMed ID: 22795761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deployment of visual attention before sequences of goal-directed hand movements.
    Baldauf D; Wolf M; Deubel H
    Vision Res; 2006 Dec; 46(26):4355-74. PubMed ID: 17034829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor planning of arm movements is direction-dependent in the gravity field.
    Gentili R; Cahouet V; Papaxanthis C
    Neuroscience; 2007 Mar; 145(1):20-32. PubMed ID: 17224242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual guidance of arm reaching: online adjustments of movement direction are impaired by amplitude control.
    Sarlegna FR; Blouin J
    J Vis; 2010 May; 10(5):24. PubMed ID: 20616127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The minimum endpoint variance trajectory depends on the profile of the signal-dependent noise.
    Iguchi N; Sakaguchi Y; Ishida F
    Biol Cybern; 2005 Apr; 92(4):219-28. PubMed ID: 15765212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Timing and the control of rhythmic upper-limb movements.
    Shafir T; Brown SH
    J Mot Behav; 2010; 42(1):71-84. PubMed ID: 20051350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational motor control: feedback and accuracy.
    Guigon E; Baraduc P; Desmurget M
    Eur J Neurosci; 2008 Feb; 27(4):1003-16. PubMed ID: 18279368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks.
    Sergio LE; Hamel-Pâquet C; Kalaska JF
    J Neurophysiol; 2005 Oct; 94(4):2353-78. PubMed ID: 15888522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The control parameters used by the CNS to guide the hand depend on the visuo-motor task: evidence from visually guided pointing.
    Thaler L; Todd JT
    Neuroscience; 2009 Mar; 159(2):578-98. PubMed ID: 19174179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of trajectory planning models for arm-reaching movements based on energy cost.
    Nishii J; Taniai Y
    Neural Comput; 2009 Sep; 21(9):2634-47. PubMed ID: 19548798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Movement precues in planning and execution of aiming movements in Parkinson's disease.
    Leis BC; Rand MK; Van Gemmert AW; Longstaff MG; Lou JS; Stelmach GE
    Exp Neurol; 2005 Aug; 194(2):393-409. PubMed ID: 16022867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring online and offline processing of visual feedback in target-directed movements from kinematic data.
    Khan MA; Franks IM; Elliott D; Lawrence GP; Chua R; Bernier PM; Hansen S; Weeks DJ
    Neurosci Biobehav Rev; 2006; 30(8):1106-21. PubMed ID: 16839604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimodal reference frame for the planning of vertical arms movements.
    Le Seac'h AB; McIntyre J
    Neurosci Lett; 2007 Aug; 423(3):211-5. PubMed ID: 17709199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.