These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 14561689)

  • 1. Involvement of the ryanodine receptor in morphologic modification of Hermissenda type B photoreceptors after in vitro conditioning.
    Kawai R; Horikoshi T; Sakakibara M
    J Neurophysiol; 2004 Feb; 91(2):728-35. PubMed ID: 14561689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ryanodine receptor modulation of in vitro associative learning in Hermissenda crassicornis.
    Blackwell KT; Alkon DL
    Brain Res; 1999 Mar; 822(1-2):114-25. PubMed ID: 10082889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium waves and closure of potassium channels in response to GABA stimulation in Hermissenda type B photoreceptors.
    Blackwell KT
    J Neurophysiol; 2002 Feb; 87(2):776-92. PubMed ID: 11826046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium influx and release from intracellular stores contribute differentially to activity-dependent neuronal facilitation in Hermissenda photoreceptors.
    Talk AC; Matzel LD
    Neurobiol Learn Mem; 1996 Sep; 66(2):183-97. PubMed ID: 8946411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical aspects of in vitro conditioning in Hermissenda type B photoreceptor.
    Kawai R; Yasuoka T; Sakakibara M
    Zoolog Sci; 2003 Jan; 20(1):1-6. PubMed ID: 12560594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic currents underlying difference in light response between type A and type B photoreceptors.
    Blackwell KT
    J Neurophysiol; 2006 May; 95(5):3060-72. PubMed ID: 16394075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of presynaptic action potential kinetics underlies synaptic facilitation of type B photoreceptors after associative conditioning in Hermissenda.
    Gandhi CC; Matzel LD
    J Neurosci; 2000 Mar; 20(5):2022-35. PubMed ID: 10684903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Type-3 ryanodine receptor involved in Ca2+-induced Ca2+ release and transmitter exocytosis at frog motor nerve terminals.
    Kubota M; Narita K; Murayama T; Suzuki S; Soga S; Usukura J; Ogawa Y; Kuba K
    Cell Calcium; 2005 Dec; 38(6):557-67. PubMed ID: 16157373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ryanodine receptor antagonism protects the ischemic liver and modulates TNF-alpha and IL-10.
    López-Neblina F; Toledo-Pereyra LH; Toledo AH; Walsh J
    J Surg Res; 2007 Jun; 140(1):121-8. PubMed ID: 17359999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro conditioning induces morphological changes in Hermissenda type B photoreceptor.
    Kawai R; Horikoshi T; Yasuoka T; Sakakibara M
    Neurosci Res; 2002 Aug; 43(4):363-72. PubMed ID: 12135779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signaling mechanisms of down-regulation of voltage-activated Ca2+ channels by transient receptor potential vanilloid type 1 stimulation with olvanil in primary sensory neurons.
    Wu ZZ; Chen SR; Pan HL
    Neuroscience; 2006 Aug; 141(1):407-19. PubMed ID: 16678970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of ryanodine receptors in effects of cyclic GMP is reduced in thyroxine-induced cardiac hypertrophy.
    Zhang Q; Goel N; Rodriguez R; Scholz PM; Weiss HR
    Eur J Pharmacol; 2006 May; 537(1-3):45-51. PubMed ID: 16626695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presynaptic mechanism of action induced by 5-HT in nerve terminals: possible involvement of ryanodine and IP3 sensitive 2+ stores.
    Dropic AJ; Brailoiu E; Cooper RL
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Nov; 142(3):355-61. PubMed ID: 16182580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PP1 inhibitors depolarize Hermissenda photoreceptors and reduce K+ currents.
    Huang H; Farley J
    J Neurophysiol; 2001 Sep; 86(3):1297-311. PubMed ID: 11535678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular Ca2+ regulation in rat motoneurons during development.
    Dayanithi G; Mechaly I; Viero C; Aptel H; Alphandery S; Puech S; Bancel F; Valmier J
    Cell Calcium; 2006 Mar; 39(3):237-46. PubMed ID: 16324742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Inositoltriphosphate receptors and ryanodine receptors in regulation of cholinosensitivity of Helix lucorum neurones by Na,K-pump during habituation].
    Nistratova VL; Pivovarov AS
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2004; 54(4):554-64. PubMed ID: 15481394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Modulation of extracellular calcium on miniature inhibitory postsynaptic currents of Xenopus' optic tectal neurons].
    Wang H; Cai HR
    Sheng Li Xue Bao; 2003 Oct; 55(5):599-606. PubMed ID: 14566411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic basis of learning-correlated excitability changes in Hermissenda type A photoreceptors.
    Farley J; Han Y
    J Neurophysiol; 1997 Apr; 77(4):1861-88. PubMed ID: 9114242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of gadolinium on the ryanodine receptor/sarcoplasmic reticulum calcium release channel of skeletal muscle.
    Sárközi S; Szegedi C; Lukács B; Ronjat M; Jóna I
    FEBS J; 2005 Jan; 272(2):464-71. PubMed ID: 15654884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study of visuo-vestibular conditioning in Lymnaea stagnalis.
    Sakakibara M
    Biol Bull; 2006 Jun; 210(3):298-307. PubMed ID: 16801503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.