These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 14561692)

  • 1. Nasal trigeminal inputs release the A5 inhibition received by the respiratory rhythm generator of the mouse neonate.
    Viemari JC; Bévengut M; Coulon P; Hilaire G
    J Neurophysiol; 2004 Feb; 91(2):746-58. PubMed ID: 14561692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of trigeminal respiratory motor activity in the brainstem.
    Koizumi H; Nomura K; Yokota Y; Enomoto A; Yamanishi T; Iida S; Ishihama K; Kogo M
    J Dent Res; 2009 Nov; 88(11):1048-53. PubMed ID: 19828895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subtype composition and responses of respiratory neurons in the pre-botzinger region to pulmonary afferent inputs in dogs.
    Krolo M; Tonkovic-Capin V; Stucke AG; Stuth EA; Hopp FA; Dean C; Zuperku EJ
    J Neurophysiol; 2005 May; 93(5):2674-87. PubMed ID: 15601729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of nasotrigeminal afferents on medullary respiratory neurones and upper airway patency in the rat.
    Dutschmann M; Paton JF
    Pflugers Arch; 2002 May; 444(1-2):227-35. PubMed ID: 11976936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role in the inspiratory off-switch of vagal inputs to rostral pontine inspiratory-modulated neurons.
    Cohen MI; Shaw CF
    Respir Physiol Neurobiol; 2004 Nov; 143(2-3):127-40. PubMed ID: 15519550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Changes in respiration following trigeminal nerve block in decerebrate cats].
    Glebovskiĭ VD
    Fiziol Zh SSSR Im I M Sechenova; 1981 Jun; 67(6):865-72. PubMed ID: 7274485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressor responses to nasal stimulation are unaltered after disrupting the CPA.
    Panneton WM; Sun W; Gan Q
    Auton Neurosci; 2008 Dec; 144(1-2):13-21. PubMed ID: 18809361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscarinic receptors and alpha2-adrenoceptors interact to modulate the respiratory rhythm in mouse neonates.
    Zanella S; Viemari JC; Hilaire G
    Respir Physiol Neurobiol; 2007 Aug; 157(2-3):215-25. PubMed ID: 17267295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possible modulation of the mouse respiratory rhythm generator by A1/C1 neurones.
    Zanella S; Roux JC; Viemari JC; Hilaire G
    Respir Physiol Neurobiol; 2006 Sep; 153(2):126-38. PubMed ID: 16309976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of nociceptive dural input to the trigeminal nucleus caudalis via activation of the orexin 1 receptor in the rat.
    Holland PR; Akerman S; Goadsby PJ
    Eur J Neurosci; 2006 Nov; 24(10):2825-33. PubMed ID: 17156207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of neurons in the trigeminal nucleus caudalis responding to noxious dural and facial stimulation.
    Bolton S; O'Shaughnessy CT; Goadsby PJ
    Brain Res; 2005 Jun; 1046(1-2):122-9. PubMed ID: 15885666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perinatal maturation of the respiratory rhythm generator in mammals: from experimental results to computational simulation.
    Achard P; Zanella S; Rodriguez R; Hilaire G
    Respir Physiol Neurobiol; 2005 Nov; 149(1-3):17-27. PubMed ID: 16203211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of the respiratory rhythm generator by the pontine noradrenergic A5 and A6 groups in rodents.
    Hilaire G; Viemari JC; Coulon P; Simonneau M; Bévengut M
    Respir Physiol Neurobiol; 2004 Nov; 143(2-3):187-97. PubMed ID: 15519555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective distribution and function of primary afferent nociceptive inputs from deep muscle tissue to the brainstem trigeminal transition zone.
    Wang H; Wei F; Dubner R; Ren K
    J Comp Neurol; 2006 Sep; 498(3):390-402. PubMed ID: 16871539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of trigeminal nerve block on respiration in vagotomized cats].
    Glebovskiĭ VD; Sukhova GK
    Fiziol Zh SSSR Im I M Sechenova; 1983 Sep; 69(9):1207-15. PubMed ID: 6641999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trigeminal nasal-specific neurons respond to nerve growth factor with substance-P biosynthesis.
    Mingomataj E; Dinh QT; Groneberg D; Feleszko W; Schmeck B; Joachim R; Noga O; Nagel S; Klapp BF; Fischer A
    Clin Exp Allergy; 2008 Jul; 38(7):1203-11. PubMed ID: 18307524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal organization of frog respiratory neurons visualized on the ventral medullary surface.
    Oku Y; Kimura N; Masumiya H; Okada Y
    Respir Physiol Neurobiol; 2008 May; 161(3):281-90. PubMed ID: 18448395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network mechanisms of spindle-burst oscillations in the neonatal rat barrel cortex in vivo.
    Minlebaev M; Ben-Ari Y; Khazipov R
    J Neurophysiol; 2007 Jan; 97(1):692-700. PubMed ID: 17093125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Striatal inhibition of nociceptive responses evoked in trigeminal sensory neurons by tooth pulp stimulation.
    Belforte JE; Pazo JH
    J Neurophysiol; 2005 Mar; 93(3):1730-41. PubMed ID: 15738277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Stimulation of trigeminal receptors of the nasal mucosa by respiratory airflow].
    Glebovskiĭ VD; Baev AV
    Fiziol Zh SSSR Im I M Sechenova; 1984 Nov; 70(11):1534-41. PubMed ID: 6519287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.