These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 14561747)

  • 1. The mitochondrial citrate transport protein: probing the secondary structure of transmembrane domain III, identification of residues that likely comprise a portion of the citrate transport pathway, and development of a model for the putative TMDIII-TMDIII' interface.
    Ma C; Kotaria R; Mayor JA; Eriks LR; Dean AM; Walters DE; Kaplan RS
    J Biol Chem; 2004 Jan; 279(2):1533-40. PubMed ID: 14561747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The yeast mitochondrial citrate transport protein. Probing the secondary structure of transmembrane domain iv and identification of residues that likely comprise a portion of the citrate translocation pathway.
    Kaplan RS; Mayor JA; Brauer D; Kotaria R; Walters DE; Dean AM
    J Biol Chem; 2000 Apr; 275(16):12009-16. PubMed ID: 10766832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mitochondrial citrate transport protein: evidence for a steric interaction between glutamine 182 and leucine 120 and its relationship to the substrate translocation pathway and identification of other mechanistically essential residues.
    Ma C; Remani S; Kotaria R; Mayor JA; Walters DE; Kaplan RS
    Biochim Biophys Acta; 2006; 1757(9-10):1271-6. PubMed ID: 16904062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The yeast mitochondrial citrate transport protein. Probing the roles of cysteines, Arg(181), and Arg(189) in transporter function.
    Xu Y; Kakhniashvili DA; Gremse DA; Wood DO; Mayor JA; Walters DE; Kaplan RS
    J Biol Chem; 2000 Mar; 275(10):7117-24. PubMed ID: 10702279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The yeast mitochondrial citrate transport protein: characterization of transmembrane domain III residue involvement in substrate translocation.
    Ma C; Kotaria R; Mayor JA; Remani S; Walters DE; Kaplan RS
    J Biol Chem; 2005 Jan; 280(3):2331-40. PubMed ID: 15498760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the secondary structure of the cys-less yeast mitochondrial citrate transport protein and four single-cys variants by circular dichroism.
    Cascio M; Mayor JA; Kaplan RS
    J Bioenerg Biomembr; 2004 Oct; 36(5):429-38. PubMed ID: 15534390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The yeast mitochondrial citrate transport protein: determination of secondary structure and solvent accessibility of transmembrane domain IV using site-directed spin labeling.
    Kaplan RS; Mayor JA; Kotaria R; Walters DE; McHaourab HS
    Biochemistry; 2000 Aug; 39(31):9157-63. PubMed ID: 10924109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fourth transmembrane domain of the Helicobacter pylori Na+/H+ antiporter NhaA faces a water-filled channel required for ion transport.
    Kuwabara N; Inoue H; Tsuboi Y; Nakamura N; Kanazawa H
    J Biol Chem; 2004 Sep; 279(39):40567-75. PubMed ID: 15263004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homology-modeled structure of the yeast mitochondrial citrate transport protein.
    Walters DE; Kaplan RS
    Biophys J; 2004 Aug; 87(2):907-11. PubMed ID: 15298898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topography of helices 5-7 in membrane-inserted diphtheria toxin T domain: identification and insertion boundaries of two hydrophobic sequences that do not form a stable transmembrane hairpin.
    Rosconi MP; London E
    J Biol Chem; 2002 May; 277(19):16517-27. PubMed ID: 11859081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substituted cysteine accessibility of the third transmembrane domain of the creatine transporter: defining a transport pathway.
    Dodd JR; Christie DL
    J Biol Chem; 2005 Sep; 280(38):32649-54. PubMed ID: 16049011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cysteine-scanning mutagenesis of transmembrane domain XII and the flanking periplasmic loop in the lactose permease of EScherichia coli.
    He MM; Sun J; Kaback HR
    Biochemistry; 1996 Oct; 35(39):12909-14. PubMed ID: 8841135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the membrane domain of subunit b of the Escherichia coli F0F1 ATP synthase.
    Dmitriev O; Jones PC; Jiang W; Fillingame RH
    J Biol Chem; 1999 May; 274(22):15598-604. PubMed ID: 10336456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformationally sensitive residues in transmembrane domain 9 of the Na+/dicarboxylate co-transporter.
    Pajor AM
    J Biol Chem; 2001 Aug; 276(32):29961-8. PubMed ID: 11399753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mitochondrial oxoglutarate carrier: cysteine-scanning mutagenesis of transmembrane domain IV and sensitivity of Cys mutants to sulfhydryl reagents.
    Stipani V; Cappello AR; Daddabbo L; Natuzzi D; Miniero DV; Stipani I; Palmieri F
    Biochemistry; 2001 Dec; 40(51):15805-10. PubMed ID: 11747458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of a substrate binding domain of the human reduced folate carrier to transmembrane domain 11 by radioaffinity labeling and cysteine-substituted accessibility methods.
    Hou Z; Stapels SE; Haska CL; Matherly LH
    J Biol Chem; 2005 Oct; 280(43):36206-13. PubMed ID: 16115875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fluorescence method to define transmembrane alpha-helices in membrane proteins: studies with bacterial diacylglycerol kinase.
    Jittikoon J; East JM; Lee AG
    Biochemistry; 2007 Sep; 46(38):10950-9. PubMed ID: 17722884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High level expression and characterization of the mitochondrial citrate transport protein from the yeast Saccharomyces cerevisiae.
    Kaplan RS; Mayor JA; Gremse DA; Wood DO
    J Biol Chem; 1995 Feb; 270(8):4108-14. PubMed ID: 7876161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cysteine-scanning mutagenesis of helix II and flanking hydrophilic domains in the lactose permease of Escherichia coli.
    Frillingos S; Sun J; Gonzalez A; Kaback HR
    Biochemistry; 1997 Jan; 36(1):269-73. PubMed ID: 8993343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Docking of the periplasmic FecB binding protein to the FecCD transmembrane proteins in the ferric citrate transport system of Escherichia coli.
    Braun V; Herrmann C
    J Bacteriol; 2007 Oct; 189(19):6913-8. PubMed ID: 17660286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.