BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

703 related articles for article (PubMed ID: 14562125)

  • 61. How and why minimal residual disease studies are necessary in leukemia: a review from WP10 and WP12 of the European LeukaemiaNet.
    Béné MC; Kaeda JS
    Haematologica; 2009 Aug; 94(8):1135-50. PubMed ID: 19586938
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Fluorescence quantitative PCR detection of WT1 gene expression in peripheral blood of patients with acute leukemias and its clinical implications].
    Bai B; Wang HW; Xu YQ; Yang HN; Qiao ZH
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2005 Aug; 13(4):610-4. PubMed ID: 16129044
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Quantification of CBFB-MYH11 fusion gene levels in paired peripheral blood and bone marrow samples by real-time PCR.
    Boeckx N; De Roover J; van der Velden VH; Maertens J; Uyttebroeck A; Vandenberghe P; van Dongen JJ
    Leukemia; 2005 Nov; 19(11):1988-90. PubMed ID: 16193088
    [No Abstract]   [Full Text] [Related]  

  • 64. Real-time quantitative RT-PCR to detect fusion gene transcripts associated with AML.
    Flora R; Grimwade D
    Methods Mol Med; 2004; 91():151-73. PubMed ID: 14573936
    [No Abstract]   [Full Text] [Related]  

  • 65. Efficient detection of leukemia-related fusion transcripts by multiplex PCR applied on a microelectronic platform.
    Corradi B; Fazio G; Palmi C; Rossi V; Biondi A; Cazzaniga G
    Leukemia; 2008 Feb; 22(2):294-302. PubMed ID: 17943166
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The use of housekeeping genes for real-time PCR-based quantification of fusion gene transcripts in acute myeloid leukemia.
    Weisser M; Haferlach T; Schoch C; Hiddemann W; Schnittger S
    Leukemia; 2004 Sep; 18(9):1551-3. PubMed ID: 15284861
    [No Abstract]   [Full Text] [Related]  

  • 67. Simultaneous detection of 45 fusion genes in leukemia by dual-color fluorescence real-time PCR.
    Zheng Z; Zhang P; He G; Liao K; Wang Z; Pan J; Du K; Du J; Li BA
    Int J Lab Hematol; 2017 Apr; 39(2):175-184. PubMed ID: 28133905
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Overview of real-time RT-PCR strategies for quantification of gene rearrangements in the myeloid malignancies.
    Picard C; Silvy M; Gabert J
    Methods Mol Med; 2006; 125():27-68. PubMed ID: 16502577
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Gene expression profiling for the diagnosis of acute leukaemia.
    Haferlach T; Kohlmann A; Bacher U; Schnittger S; Haferlach C; Kern W
    Br J Cancer; 2007 Feb; 96(4):535-40. PubMed ID: 17146476
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Analysis of Wilms tumor gene (WT1) expression in acute leukemia patients with special reference to the differential diagnosis between eosinophilic leukemia and idiopathic hypereosinophilic syndromes.
    Menssen HD; Schmidt A; Bartelt S; Arjomand A; Thomsen H; Leben R; Kath R; Thiel E
    Leuk Lymphoma; 2000 Jan; 36(3-4):285-94. PubMed ID: 10674900
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [RT-PCR detecting NUP98-HOX fusion gene in leukemia].
    Zhang Y; Li L; Wen BZ; Lin RY; Cao X; Wang N; Ha Li Da YS; Jiang M; Wen H; Lu XM; Feng XH; Wang X
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2005 Feb; 13(1):83-7. PubMed ID: 15748441
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Multiplex fluorescent RT-PCR to quantify leukemic fusion transcripts.
    Dupont M; Goldsborough A; Levayer T; Savare J; Rey JM; Rossi JF; Demaille J; Lavabre-Bertrand T
    Biotechniques; 2002 Jul; 33(1):158-60, 162, 164. PubMed ID: 12139241
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Reliability of PCR-based detection of occult tumour cells: lessons from real-time RT-PCR.
    Max N; Willhauck M; Wolf K; Thilo F; Reinhold U; Pawlita M; Thiel E; Keilholz U
    Melanoma Res; 2001 Aug; 11(4):371-8. PubMed ID: 11479425
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Eprobe mediated RT-qPCR for the detection of leukemia-associated fusion genes.
    Tsuchiya K; Tabe Y; Ai T; Ohkawa T; Usui K; Yuri M; Misawa S; Morishita S; Takaku T; Kakimoto A; Yang H; Matsushita H; Hanami T; Yamanaka Y; Okuzawa A; Horii T; Hayashizaki Y; Ohsaka A
    PLoS One; 2018; 13(10):e0202429. PubMed ID: 30281597
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Validation and clinical implication of a quantitative real-time PCR determination of MDR1 gene expression: comparison with semi-quantitative PCR in 101 patients with acute myeloid leukemia.
    Olesen LH; Nørgaard JM; Pallisgaard N; Bukh A; Hokland P
    Eur J Haematol; 2003 May; 70(5):296-303. PubMed ID: 12694165
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Minimal residual disease of leukemia and the quality of cryopreserved human ovarian tissue in vitro.
    Asadi-Azarbaijani B; Sheikhi M; Nurmio M; Tinkanen H; Juvonen V; Dunkel L; Hovatta O; Oskam IC; Jahnukainen K
    Leuk Lymphoma; 2016; 57(3):700-7. PubMed ID: 26122194
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Diagnosis and monitoring of CBFB-MYH11-positive acute myeloid leukemia by qualitative and quantitative RT-PCR.
    van der Reijden BA; Jansen JH
    Methods Mol Med; 2006; 125():163-75. PubMed ID: 16502584
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evaluation of real-time quantitative PCR machines for the monitoring of fusion gene transcripts using the Europe against cancer protocol.
    Silvy M; Mancini J; Thirion X; Sigaux F; Gabert J
    Leukemia; 2005 Feb; 19(2):305-7. PubMed ID: 15618967
    [No Abstract]   [Full Text] [Related]  

  • 79. Minimal residual disease testing in hematologic malignancies and solid cancer.
    Ben Lassoued A; Nivaggioni V; Gabert J
    Expert Rev Mol Diagn; 2014 Jul; 14(6):699-712. PubMed ID: 24938122
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Microfluidics-Based PCR for Fusion Transcript Detection.
    Chen H
    Methods Mol Biol; 2016; 1392():103-11. PubMed ID: 26843050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.