These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 14562355)
1. Directed evolution of an amine oxidase possessing both broad substrate specificity and high enantioselectivity. Carr R; Alexeeva M; Enright A; Eve TS; Dawson MJ; Turner NJ Angew Chem Int Ed Engl; 2003 Oct; 42(39):4807-10. PubMed ID: 14562355 [No Abstract] [Full Text] [Related]
2. Directed evolution of enzymes: new biocatalysts for asymmetric synthesis. Alexeeva M; Carr R; Turner NJ Org Biomol Chem; 2003 Dec; 1(23):4133-7. PubMed ID: 14685314 [TBL] [Abstract][Full Text] [Related]
3. A small molecule that mimics the metabolic activity of copper-containing amine oxidases (CuAOs) toward physiological mono- and polyamines. Largeron M; Fleury MB; Strolin Benedetti M Org Biomol Chem; 2010 Aug; 8(16):3796-800. PubMed ID: 20574584 [TBL] [Abstract][Full Text] [Related]
5. Mechanism-based cofactor derivatization of a copper amine oxidase by a branched primary amine recruits the oxidase activity of the enzyme to turn inactivator into substrate. Qiao C; Ling KQ; Shepard EM; Dooley DM; Sayre LM J Am Chem Soc; 2006 May; 128(18):6206-19. PubMed ID: 16669691 [TBL] [Abstract][Full Text] [Related]
6. Oxidation of unactivated primary aliphatic amines catalyzed by an electrogenerated 3,4-azaquinone species: a small-molecule mimic of amine oxidases. Largeron M; Neudorffer A; Fleury MB Angew Chem Int Ed Engl; 2003 Mar; 42(9):1026-9. PubMed ID: 12616557 [No Abstract] [Full Text] [Related]
7. Further insight into the mechanism of stereoselective proton abstraction by bacterial copper amine oxidase. Taki M; Murakawa T; Nakamoto T; Uchida M; Hayashi H; Tanizawa K; Yamamoto Y; Okajima T Biochemistry; 2008 Jul; 47(29):7726-33. PubMed ID: 18627131 [TBL] [Abstract][Full Text] [Related]
8. Chemical rescue of a site-specific mutant of bacterial copper amine oxidase for generation of the topa quinone cofactor. Matsunami H; Okajima T; Hirota S; Yamaguchi H; Hori H; Kuroda S; Tanizawa K Biochemistry; 2004 Mar; 43(8):2178-87. PubMed ID: 14979714 [TBL] [Abstract][Full Text] [Related]
9. Role of a strictly conserved active site tyrosine in cofactor genesis in the copper amine oxidase from Hansenula polymorpha. DuBois JL; Klinman JP Biochemistry; 2006 Mar; 45(10):3178-88. PubMed ID: 16519513 [TBL] [Abstract][Full Text] [Related]
10. The copper-containing amine oxidases: biochemical aspects and functional role. Buffoni F; Ignesti G Mol Genet Metab; 2000 Dec; 71(4):559-64. PubMed ID: 11136547 [No Abstract] [Full Text] [Related]
11. Partial conversion of Hansenula polymorpha amine oxidase into a "plant" amine oxidase: implications for copper chemistry and mechanism. Welford RW; Lam A; Mirica LM; Klinman JP Biochemistry; 2007 Sep; 46(38):10817-27. PubMed ID: 17760423 [TBL] [Abstract][Full Text] [Related]
12. Copper-containing amine oxidases. Biogenesis and catalysis; a structural perspective. Brazeau BJ; Johnson BJ; Wilmot CM Arch Biochem Biophys; 2004 Aug; 428(1):22-31. PubMed ID: 15234266 [TBL] [Abstract][Full Text] [Related]
13. Semicarbazide-sensitive amine oxidases: enzymes with quite a lot to do. O'Sullivan J; Unzeta M; Healy J; O'Sullivan MI; Davey G; Tipton KF Neurotoxicology; 2004 Jan; 25(1-2):303-15. PubMed ID: 14697905 [TBL] [Abstract][Full Text] [Related]
14. Medical implications from the crystal structure of a copper-containing amine oxidase complexed with the antidepressant drug tranylcypromine. Wilmot CM; Saysell CG; Blessington A; Conn DA; Kurtis CR; McPherson MJ; Knowles PF; Phillips SE FEBS Lett; 2004 Oct; 576(3):301-5. PubMed ID: 15498552 [TBL] [Abstract][Full Text] [Related]
15. N-alkanamines as substrates to probe the hydrophobic region of bovine serum amine oxidase active site: a kinetic and spectroscopic study. Di Paolo ML; Pesce C; Lunelli M; Scarpa M; Rigo A Arch Biochem Biophys; 2007 Sep; 465(1):50-60. PubMed ID: 17548046 [TBL] [Abstract][Full Text] [Related]