These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 14563168)

  • 1. Lack of arginine decarboxylase in Trypanosoma cruzi epimastigotes.
    Carrillo C; Cejas S; Huber A; González NS; Algranati ID
    J Eukaryot Microbiol; 2003; 50(5):312-6. PubMed ID: 14563168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyamines in Trypanosoma cruzi.
    Schwarcz de Tarlovsky MN; Hernandez SM; Bedoya AM; Lammel EM; Isola EL
    Biochem Mol Biol Int; 1993 Jul; 30(3):547-58. PubMed ID: 8401312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arginine decarboxylase in Trypanosoma cruzi, characteristics and kinetic properties.
    Hernández S; Schwarcz de Tarlovsky S
    Cell Mol Biol (Noisy-le-grand); 1999 Jun; 45(4):383-91. PubMed ID: 10432184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-translational processing, metabolic stability and catalytic efficiency of oat arginine decarboxylase expressed in Trypanosoma cruzi epimastigotes.
    Serra MP; Senn AM; Algranati ID
    Exp Parasitol; 2009 Jul; 122(3):169-76. PubMed ID: 19063883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical evidence for the presence of arginine decarboxylase activity in Trypanosoma cruzi.
    Majumder S; Wirth JJ; Bitonti AJ; McCann PP; Kierszenbaum F
    J Parasitol; 1992 Apr; 78(2):371-4. PubMed ID: 1556653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of oat arginine decarboxylase gene expression and genome organization in transgenic Trypanosoma cruzi epimastigotes.
    Serra MP; Carrillo C; González NS; Algranati ID
    FEBS J; 2006 Feb; 273(3):628-37. PubMed ID: 16420485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. L-arginine-dependent suppression of apoptosis in Trypanosoma cruzi: contribution of the nitric oxide and polyamine pathways.
    Piacenza L; Peluffo G; Radi R
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7301-6. PubMed ID: 11404465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arginine decarboxylase inhibitors reduce the capacity of Trypanosoma cruzi to infect and multiply in mammalian host cells.
    Kierszenbaum F; Wirth JJ; McCann PP; Sjoerdsma A
    Proc Natl Acad Sci U S A; 1987 Jun; 84(12):4278-82. PubMed ID: 3295879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arginine decarboxylase and agmatinase: an alternative pathway for de novo biosynthesis of polyamines for development of mammalian conceptuses.
    Wang X; Ying W; Dunlap KA; Lin G; Satterfield MC; Burghardt RC; Wu G; Bazer FW
    Biol Reprod; 2014 Apr; 90(4):84. PubMed ID: 24648395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diamine auxotrophy may be a universal feature of Trypanosoma cruzi epimastigotes.
    Ariyanayagam MR; Fairlamb AH
    Mol Biochem Parasitol; 1997 Jan; 84(1):111-21. PubMed ID: 9041526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterologous expression of a plant arginine decarboxylase gene in Trypanosoma cruzi.
    Carrillo C; Serra MP; Pereira CA; Huber A; González NS; Algranati ID
    Biochim Biophys Acta; 2004 Nov; 1674(3):223-30. PubMed ID: 15541291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endogenous polyamine levels in macrophages is sufficient to support growth of Toxoplasma gondii.
    Seabra SH; DaMatta RA; de Mello FG; de Souza W
    J Parasitol; 2004 Jun; 90(3):455-60. PubMed ID: 15270085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Putrescine biosynthesis in mammalian tissues.
    Coleman CS; Hu G; Pegg AE
    Biochem J; 2004 May; 379(Pt 3):849-55. PubMed ID: 14763899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyamine metabolism in Trypanosoma cruzi: studies on the expression and regulation of heterologous genes involved in polyamine biosynthesis.
    Algranati ID
    Amino Acids; 2010 Feb; 38(2):645-51. PubMed ID: 19956988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of Arginine and Ornithine Decarboxylase Activities in Plants.
    Alcázar R; Tiburcio AF
    Methods Mol Biol; 2018; 1694():117-122. PubMed ID: 29080161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catabolism of L-arginine by Pseudomonas aeruginosa.
    Mercenier A; Simon JP; Haas D; Stalon V
    J Gen Microbiol; 1980 Feb; 116(2):381-9. PubMed ID: 6768836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyamine and thiol metabolism in Trypanosoma granulosum: similarities with Trypanosoma cruzi.
    Mastri C; Thorborn DE; Davies AJ; Ariyanayagam MR; Hunter KJ
    Biochem Biophys Res Commun; 2001 Apr; 282(5):1177-82. PubMed ID: 11302739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A probable new pathway for the biosynthesis of putrescine in Escherichia coli.
    Cataldi AA; Algranati ID
    Biochem J; 1986 Mar; 234(3):617-22. PubMed ID: 3521593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arginine decarboxylase as the source of putrescine for tobacco alkaloids.
    Tiburcio AF; Galston AW
    Phytochemistry; 1986; 25(1):107-10. PubMed ID: 11539094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of polyamine biosynthesis in Crithidia fasciculata by D,L-alpha-difluoromethylornithine and D,L-alpha-difluoromethylarginine.
    Hunter KJ; Strobos CA; Fairlamb AH
    Mol Biochem Parasitol; 1991 May; 46(1):35-43. PubMed ID: 1852175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.