BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 14563483)

  • 1. Molecular mechanism of the enzymatic oxidation investigated for imidazoacridinone antitumor drug, C-1311.
    Mazerska Z; Sowiński P; Konopa J
    Biochem Pharmacol; 2003 Nov; 66(9):1727-36. PubMed ID: 14563483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic activation of a new antitumour drug, 5-diethylaminoethylamino-8-hydroxyimidazoacridinone, C-1311, observed after its intercalation into DNA.
    Mazerska Z; Dziegielewski J; Konopa J
    Biochem Pharmacol; 2001 Mar; 61(6):685-94. PubMed ID: 11266653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relevance of enzymatic oxidation by horseradish peroxidase to antitumour potency of imidazoacridinone derivatives.
    Mazerska Z; Gorlewska K; Kraciuk A; Konopa J
    Chem Biol Interact; 1998 Aug; 115(1):1-22. PubMed ID: 9817072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Similarity between enzymatic and electrochemical oxidation of 2-hydroxyacridinone, the reference compound of antitumor imidazoacridinones.
    Mazerska Z
    Acta Biochim Pol; 2003; 50(2):515-25. PubMed ID: 12833176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical simulation of metabolism for antitumor-active imidazoacridinone C-1311 and in silico prediction of drug metabolic reactions.
    Potęga A; Żelaszczyk D; Mazerska Z
    J Pharm Biomed Anal; 2019 May; 169():269-278. PubMed ID: 30884325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative metabolism of the anti-cancer agent mitoxantrone by horseradish, lacto-and lignin peroxidase.
    Brück TB; Brück DW
    Biochimie; 2011 Feb; 93(2):217-26. PubMed ID: 20887767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Products of metabolic activation of the antitumor drug ledakrin (nitracrine) in vitro.
    Gorlewska K; Mazerska Z; Sowiński P; Konopa J
    Chem Res Toxicol; 2001 Jan; 14(1):1-10. PubMed ID: 11170502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic transformations of antitumor imidazoacridinone, C-1311, with microsomal fractions of rat and human liver.
    Wiśniewska A; Chrapkowska A; Kot-Wasik A; Konopa J; Mazerska Z
    Acta Biochim Pol; 2007; 54(4):831-8. PubMed ID: 18084652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intercalation complex of imidazoacridinone C-1311, a potential anticancer drug, with DNA helix d(CGATCG)2: stereostructural studies by 2D NMR spectroscopy.
    Laskowski T; Czub J; Sowiński P; Mazerski J
    J Biomol Struct Dyn; 2016; 34(3):653-63. PubMed ID: 26211888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flavin monooxygenases, FMO1 and FMO3, not cytochrome P450 isoenzymes, contribute to metabolism of anti-tumour triazoloacridinone, C-1305, in liver microsomes and HepG2 cells.
    Fedejko-Kap B; Niemira M; Radominska-Pandya A; Mazerska Z
    Xenobiotica; 2011 Dec; 41(12):1044-55. PubMed ID: 21859392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peroxidase-mediated dealkylation of tamoxifen, detected by electrospray ionization-mass spectrometry, and activation to form DNA adducts.
    Gaikwad NW; Bodell WJ
    Free Radic Biol Med; 2012 Jan; 52(2):340-7. PubMed ID: 22064363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peroxidase-mediated bioactivation of hydroxylated metabolites of carbamazepine and phenytoin.
    Lu W; Uetrecht JP
    Drug Metab Dispos; 2008 Aug; 36(8):1624-36. PubMed ID: 18463199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diminished toxicity of C-1748, 4-methyl-9-hydroxyethylamino-1-nitroacridine, compared with its demethyl analog, C-857, corresponds to its resistance to metabolism in HepG2 cells.
    Wiśniewska A; Niemira M; Jagiełło K; Potęga A; Swist M; Henderson C; Skwarska A; Augustin E; Konopa J; Mazerska Z
    Biochem Pharmacol; 2012 Jul; 84(1):30-42. PubMed ID: 22484277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of acetaminophen polymerization products catalyzed by horseradish peroxidase.
    Potter DW; Miller DW; Hinson JA
    J Biol Chem; 1985 Oct; 260(22):12174-80. PubMed ID: 4044591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic oxidation of rutin by horseradish peroxidase: kinetic mechanism and identification of a dimeric product by LC-Orbitrap mass spectrometry.
    Savic S; Vojinovic K; Milenkovic S; Smelcerovic A; Lamshoeft M; Petronijevic Z
    Food Chem; 2013 Dec; 141(4):4194-9. PubMed ID: 23993605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of carboxylic acids by horseradish peroxidase results in prosthetic heme modification and inactivation.
    Huang L; Colas C; Ortiz de Montellano PR
    J Am Chem Soc; 2004 Oct; 126(40):12865-73. PubMed ID: 15469283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Horseradish peroxidase oxidation of tyrosine-containing peptides and their subsequent polymerization: a kinetic study.
    Michon T; Chenu M; Kellershon N; Desmadril M; Guéguen J
    Biochemistry; 1997 Jul; 36(28):8504-13. PubMed ID: 9214295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro metabolism of tolcapone to reactive intermediates: relevance to tolcapone liver toxicity.
    Smith KS; Smith PL; Heady TN; Trugman JM; Harman WD; Macdonald TL
    Chem Res Toxicol; 2003 Feb; 16(2):123-8. PubMed ID: 12588182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peroxidase-catalyzed formation of quercetin quinone methide-glutathione adducts.
    Awad HM; Boersma MG; Vervoort J; Rietjens IM
    Arch Biochem Biophys; 2000 Jun; 378(2):224-33. PubMed ID: 10860540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotransformation of CI-937 in primary cultures of rat hepatocytes. Formation of glutathione conjugates.
    Renner U; Blanz J; Freund S; Waidelich D; Ehninger G; Zeller KP
    Drug Metab Dispos; 1995 Jan; 23(1):94-101. PubMed ID: 7720531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.