These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 14565340)

  • 1. Structural pre-organization of peptide nucleic acids.
    Kumar VA
    Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):1045-8. PubMed ID: 14565340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constrained flexibility in PNA: DNA binding studies with bridged aminopropylglycyl PNA.
    Lonkar PS; Kumar VA; Ganesh KN
    Nucleosides Nucleotides Nucleic Acids; 2001; 20(4-7):1197-200. PubMed ID: 11562985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and synthesis of conformationally frozen peptide nucleic acid backbone: chiral piperidine PNA as a hexitol nucleic acid surrogate.
    Lonkar PS; Kumar VA
    Bioorg Med Chem Lett; 2004 May; 14(9):2147-9. PubMed ID: 15080997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-phase synthesis of cyclic PNA and PNA-DNA chimeras.
    Moggio L; De Napoli L; Di Blasio B; Di Fabio G; D'Onofrio J; Montesarchio D; Messere A
    Org Lett; 2006 May; 8(10):2015-8. PubMed ID: 16671770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of gamma-substituted peptide nucleic acids: a new place to attach fluorophores without affecting DNA binding.
    Englund EA; Appella DH
    Org Lett; 2005 Aug; 7(16):3465-7. PubMed ID: 16048318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphono peptide nucleic acids with a constrained hydroxyproline-based backbone.
    Efimov VA; Klykov VN; Chakhmakhcheva OG
    Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):593-9. PubMed ID: 14565235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. trans-5-aminopipecolyl-aegPNA chimera: design, synthesis, and study of binding preferences with DNA/RNA in duplex/triplex mode.
    Lonkar PS; Kumar VA
    J Org Chem; 2005 Aug; 70(17):6956-9. PubMed ID: 16095325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Property editing of peptide nucleic acids (PNA): gem-dimethyl, cyanuryl and 8-aminoadenine PNAs.
    Ganesh KN; Gourishankar A; Vysabhattar R; Bokil P
    Nucleic Acids Symp Ser (Oxf); 2007; (51):17-8. PubMed ID: 18029564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Backbone-extended pyrrolidine peptide nucleic acids (bepPNA): design, synthesis and DNA/RNA binding studies.
    Govindaraju T; Kumar VA
    Chem Commun (Camb); 2005 Jan; (4):495-7. PubMed ID: 15654381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convergent synthesis of peptide nucleic acids by native chemical ligation.
    Dose C; Seitz O
    Org Lett; 2005 Sep; 7(20):4365-8. PubMed ID: 16178534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrrolidinyl peptide nucleic acid homologues: effect of ring size on hybridization properties.
    Mansawat W; Vilaivan C; Balázs Á; Aitken DJ; Vilaivan T
    Org Lett; 2012 Mar; 14(6):1440-3. PubMed ID: 22375845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chimeric (aeg-pyrrolidine)PNAs: synthesis and stereo-discriminative duplex binding with DNA/RNA.
    Lonkar PS; Ganesh KN; Kumar VA
    Org Biomol Chem; 2004 Sep; 2(18):2604-11. PubMed ID: 15351824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile synthesis of peptide nucleic acids and peptide nucleic acid-peptide conjugates on an automated peptide synthesizer.
    Joshi R; Jha D; Su W; Engelmann J
    J Pept Sci; 2011 Jan; 17(1):8-13. PubMed ID: 20979047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidences for complex formation between L-dabPNA and aegPNA.
    Roviello GN; Musumeci D; Bucci EM; Castiglione M; Cesarani A; Pedone C; Piccialli G
    Bioorg Med Chem Lett; 2008 Sep; 18(17):4757-60. PubMed ID: 18707882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New synthesis of PNA-3'DNA linker monomers, useful building blocks to obtain PNA/DNA chimeras.
    Musumeci D; Roviello GN; Valente M; Sapio R; Pedone C; Bucci EM
    Biopolymers; 2004; 76(6):535-42. PubMed ID: 15526336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysine-based peptide nucleic acids (PNAs) with strong chiral constraint: control of helix handedness and DNA binding by chirality.
    Tedeschi T; Sforza S; Dossena A; Corradini R; Marchelli R
    Chirality; 2005; 17 Suppl():S196-204. PubMed ID: 15952136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Mitsunobu reaction to solid-phase peptide nucleic acid (PNA) monomer synthesis.
    Falkiewicz B
    Nucleosides Nucleotides Nucleic Acids; 2002; 21(11-12):883-9. PubMed ID: 12537028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of helix morphology on co-operative polyamide backbone conformational flexibility in peptide nucleic acid complexes.
    Topham CM; Smith JC
    J Mol Biol; 1999 Oct; 292(5):1017-38. PubMed ID: 10512700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino/guanidino-functionalized N-(pyrrolidin-2-ethyl)glycine-based pet-PNA: design, synthesis and binding with DNA/RNA.
    Gokhale SS; Kumar VA
    Org Biomol Chem; 2010 Aug; 8(16):3742-50. PubMed ID: 20539879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybridization of pyrrolidinyl peptide nucleic acids and DNA: selectivity, base-pairing specificity, and direction of binding.
    Vilaivan T; Srisuwannaket C
    Org Lett; 2006 Apr; 8(9):1897-900. PubMed ID: 16623579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.