BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 14565398)

  • 1. Synthesis and studies of modified oligonucleotides-directed triple helix formation at the purine-pyrimidine interrupted site.
    Jazouli M; Guianvarc'h D; Bougrin K; Soufiaoui M; Vierling P; Benhida R
    Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):1277-80. PubMed ID: 14565398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical modification of pyrimidine TFOs: effect on i-motif and triple helix formation.
    Lacroix L; Mergny JL
    Arch Biochem Biophys; 2000 Sep; 381(1):153-63. PubMed ID: 11019831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of a novel nucleobase allows stable oligonucleotide-directed triple helix formation at the target sequence containing a purine.pyrimidine interruption.
    Guianvarc'h D; Benhida R; Fourrey JL; Maurisse R; Sun JS
    Chem Commun (Camb); 2001 Sep; (18):1814-5. PubMed ID: 12240328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and triplex binding properties of oligonucleotides containing a novel nucleobase.
    Lecubin F; Devys M; Fourrey JL; Sun JS; Benhida R
    Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):1281-4. PubMed ID: 14565399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetics of strand-displacement reactions in triple helices: a spectroscopic study.
    Mills M; Arimondo PB; Lacroix L; Garestier T; Hélène C; Klump H; Mergny JL
    J Mol Biol; 1999 Sep; 291(5):1035-54. PubMed ID: 10518941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of alternate-strand triple helix formation at the 5'CpG3' and 5'GpC3' junction steps.
    Marchand C; Sun JS; Bailly C; Waring MJ; Garestier T; Hélène C
    Biochemistry; 1998 Sep; 37(38):13322-9. PubMed ID: 9748340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of alternating oligopurine/oligopyrimidine tracts of DNA by oligonucleotides with base-to-base linkages.
    Zhou BW; Marchand C; Asseline U; Thuong NT; Sun JS; Garestier T; Hélène C
    Bioconjug Chem; 1995; 6(5):516-23. PubMed ID: 8974448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong, specific, monodentate G-C base pair recognition by N7-inosine derivatives in the pyrimidine.purine-pyrimidine triple-helical binding motif.
    Marfurt J; Parel SP; Leumann CJ
    Nucleic Acids Res; 1997 May; 25(10):1875-82. PubMed ID: 9115352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oligonucleotide-directed DNA triple-helix formation: an approach to artificial repressors?
    Maher LJ; Wold B; Dervan PB
    Antisense Res Dev; 1991; 1(3):277-81. PubMed ID: 1821648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triple helix-directed psoralen crosslinks are recognized by Uvr(A)BC excinuclease.
    Duval-Valentin G; Takasugi M; Hélène C; Sage E
    J Mol Biol; 1998 May; 278(4):815-25. PubMed ID: 9614944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure and application of oligodeoxyribonucleotides containing modified, degenerate bases.
    Brown DM; Lin PK
    Nucleic Acids Symp Ser; 1991; (24):209-12. PubMed ID: 1841286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triple helices formed at oligopyrimidine*oligopurine sequences with base pair inversions: effect of a triplex-specific ligand on stability and selectivity.
    Kukreti S; Sun JS; Loakes D; Brown DM; Nguyen CH; Bisagni E; Garestier T; Helene C
    Nucleic Acids Res; 1998 May; 26(9):2179-83. PubMed ID: 9547278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, incorporation into triplex-forming oligonucleotide, and binding properties of a novel 2'-deoxy-C-nucleoside featuring a 6-(thiazolyl-5)benzimidazole nucleobase.
    Guianvarc'h D; Fourrey JL; Maurisse R; Sun JS; Benhida R
    Org Lett; 2002 Nov; 4(24):4209-12. PubMed ID: 12443060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of triple helices formed by oligonucleotides containing 8-aminopurines.
    Aviñó A; Frieden M; Morales JC; de la Torre BG; Güimil-García R; Orozco M; González C; Eritja R
    Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):645-8. PubMed ID: 14565244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triple helix formation by oligopurine-oligopyrimidine DNA fragments. Electrophoretic and thermodynamic behavior.
    Manzini G; Xodo LE; Gasparotto D; Quadrifoglio F; van der Marel GA; van Boom JH
    J Mol Biol; 1990 Jun; 213(4):833-43. PubMed ID: 2359124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific recognition of CG base pairs by 2-deoxynebularine within the purine.purine.pyrimidine triple-helix motif.
    Stilz HU; Dervan PB
    Biochemistry; 1993 Mar; 32(9):2177-85. PubMed ID: 8443159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extension of the range of DNA sequences available for triple helix formation: stabilization of mismatched triplexes by acridine-containing oligonucleotides.
    Kukreti S; Sun JS; Garestier T; Hélène C
    Nucleic Acids Res; 1997 Nov; 25(21):4264-70. PubMed ID: 9336456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear magnetic resonance structural studies of intramolecular purine.purine.pyrimidine DNA triplexes in solution. Base triple pairing alignments and strand direction.
    Radhakrishnan I; de los Santos C; Patel DJ
    J Mol Biol; 1991 Oct; 221(4):1403-18. PubMed ID: 1942059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation.
    Beal PA; Dervan PB
    Science; 1991 Mar; 251(4999):1360-3. PubMed ID: 2003222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics of a stable intramolecular DNA triple helix formation.
    Völker J; Botes DP; Lindsey GG; Klump HH
    J Mol Biol; 1993 Apr; 230(4):1278-90. PubMed ID: 8487304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.