These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 14565695)

  • 1. Effects of soil conditions on survival and growth of black willow cuttings.
    Schaff SD; Pezeshki SR; Shields FD
    Environ Manage; 2003 Jun; 31(6):748-63. PubMed ID: 14565695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High oxygen level in a soaking treatment improves early root and shoot development of black willow cuttings.
    Martin LT; Pezeshki SR; Shields FD
    ScientificWorldJournal; 2004 Oct; 4():899-907. PubMed ID: 15523563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Willow growth in response to nutrients and moisture on a clay landfill cap soil. I. Growth and biomass production.
    Martin PJ; Stephens W
    Bioresour Technol; 2006 Feb; 97(3):437-48. PubMed ID: 16216728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partial flooding enhances aeration in adventitious roots of black willow (Salix nigra) cuttings.
    Li S; Reza Pezeshki S; Douglas Shields F
    J Plant Physiol; 2006 Apr; 163(6):619-28. PubMed ID: 16545995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Willow water uptake and shoot extension growth in response to nutrient and moisture on a clay landfill cap soil.
    Martin PJ; Stephens W
    Bioresour Technol; 2008 Sep; 99(13):5839-50. PubMed ID: 18023343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Willow growth in response to nutrients and moisture on a clay landfill cap soil. II: Water use.
    Martin PJ; Stephens W
    Bioresour Technol; 2006 Feb; 97(3):449-58. PubMed ID: 16216729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short- and longer-term effects of the willow root system on metal extractability in contaminated dredged sediment.
    Vervaeke P; Tack FM; Lust N; Verloo M
    J Environ Qual; 2004; 33(3):976-83. PubMed ID: 15224934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of water table on willows grown in amended mine tailing.
    Bourret MM; Brummer JE; Leininger WC; Heil DM
    J Environ Qual; 2005; 34(3):782-92. PubMed ID: 15843641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment and growth of two willow species in a riparian zone impacted by mine tailings.
    Bourret MM; Brummer JE; Leininger WC
    J Environ Qual; 2009; 38(2):693-701. PubMed ID: 19244490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Above- and Belowground Development of a Fast-Growing Willow Planted in Acid-Generating Mine Technosol.
    Guittonny-Larchevêque M; Lortie S
    J Environ Qual; 2017 Nov; 46(6):1462-1471. PubMed ID: 29293827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential allelopathic effects of Japanese knotweed on willow and cottonwood cuttings used in riverbank restoration techniques.
    Dommanget F; Evette A; Spiegelberger T; Gallet C; Pacé M; Imbert M; Navas ML
    J Environ Manage; 2014 Jan; 132():71-8. PubMed ID: 24291579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth Response of Cuttings to Drought and Intermittent Flooding for Three Salix Species and Implications for Riverbank Soil Bioengineering.
    Keita N; Bourgeois B; Evette A; Tisserant M; González E; Breton V; Goulet C; Poulin M
    Environ Manage; 2021 Jun; 67(6):1137-1144. PubMed ID: 33844063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecophysiology of riparian cottonwood and willow before, during, and after two years of soil water removal.
    Hultine KR; Bush SE; Ehleringer JR
    Ecol Appl; 2010 Mar; 20(2):347-61. PubMed ID: 20405792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic and environmental variation in spring and autumn phenology of biomass willows (Salix spp.): effects on shoot growth and nitrogen economy.
    Weih M
    Tree Physiol; 2009 Dec; 29(12):1479-90. PubMed ID: 19793729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vegetative reproduction capacities of floodplain willows--cutting response to competition and biomass loss.
    Radtke A; Mosner E; Leyer I
    Plant Biol (Stuttg); 2012 Mar; 14(2):257-64. PubMed ID: 21972956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels.
    Vandecasteele B; Meers E; Vervaeke P; De Vos B; Quataert P; Tack FM
    Chemosphere; 2005 Feb; 58(8):995-1002. PubMed ID: 15664607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment of willows using the novel DeValix technique: ecological restoration mats designed for phytotechnologies.
    Vinhal RA; Zalesny RS; DeBauche BS; Rogers ER; Pilipović A; Soolanayakanahally RY; Wiese AH
    Int J Phytoremediation; 2022; 24(7):730-743. PubMed ID: 34726556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trichoderma harzianum Rifai 1295-22 mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil.
    Adams P; De-Leij FA; Lynch JM
    Microb Ecol; 2007 Aug; 54(2):306-13. PubMed ID: 17345130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of limited availability of N or water on C allocation to fine roots and annual fine root turnover in Alnus incana and Salix viminalis.
    Rytter RM
    Tree Physiol; 2013 Sep; 33(9):924-39. PubMed ID: 23963409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genotypic variability and stability of poplars and willows grown onnitrate-contaminated soils.
    Zalesny RS; Bauer EO
    Int J Phytoremediation; 2019; 21(10):969-979. PubMed ID: 30907114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.