BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 1456572)

  • 1. Inhibition by L-NG-nitro-L-arginine of nonadrenergic-noncholinergic-mediated relaxations of human isolated central and peripheral airway.
    Ellis JL; Undem BJ
    Am Rev Respir Dis; 1992 Dec; 146(6):1543-7. PubMed ID: 1456572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potentiation of nonadrenergic noncholinergic relaxation of human isolated bronchus by selective inhibitors of phosphodiesterase isozymes.
    Fernandes LB; Ellis JL; Undem BJ
    Am J Respir Crit Care Med; 1994 Nov; 150(5 Pt 1):1384-90. PubMed ID: 7952568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L-citrulline reverses the inhibition of nonadrenergic, noncholinergic relaxations produced by nitric oxide synthase inhibitors in guinea pig trachea and human bronchus.
    Ellis JL; Conanan N
    J Pharmacol Exp Ther; 1994 Jun; 269(3):1073-8. PubMed ID: 7516967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for the involvement of cGMP in neural bronchodilator responses in humal trachea.
    Ward JK; Barnes PJ; Tadjkarimi S; Yacoub MH; Belvisi MG
    J Physiol; 1995 Mar; 483 ( Pt 2)(Pt 2):525-36. PubMed ID: 7650619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of human i-NANC bronchodilator and nitric oxide-immunoreactive nerves.
    Ward JK; Barnes PJ; Springall DR; Abelli L; Tadjkarimi S; Yacoub MH; Polak JM; Belvisi MG
    Am J Respir Cell Mol Biol; 1995 Aug; 13(2):175-84. PubMed ID: 7542897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the apamin- and L-nitroarginine-resistant NANC inhibitory transmission to the circular muscle of guinea-pig colon.
    Maggi CA; Giuliani S
    J Auton Pharmacol; 1996 Jun; 16(3):131-45. PubMed ID: 8884460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of an inhibitor of nitric oxide synthase on neural relaxation of human bronchi.
    Bai TR; Bramley AM
    Am J Physiol; 1993 May; 264(5 Pt 1):L425-30. PubMed ID: 7684571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide and relaxation of pig lower urinary tract.
    Persson K; Andersson KE
    Br J Pharmacol; 1992 Jun; 106(2):416-22. PubMed ID: 1393268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for the interaction between nitric oxide and vasoactive intestinal polypeptide in the mouse gastric fundus.
    Ergün Y; Oğülener N
    J Pharmacol Exp Ther; 2001 Dec; 299(3):945-50. PubMed ID: 11714881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mediators of nonadrenergic, noncholinergic inhibition in the proximal, middle and distal regions of rat colon.
    Suthamnatpong N; Hata F; Kanada A; Takeuchi T; Yagasaki O
    Br J Pharmacol; 1993 Feb; 108(2):348-55. PubMed ID: 7680592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of inhibitory neurotransmission in the isolated corpus cavernosum from rabbit and man.
    Holmquist F; Hedlund H; Andersson KE
    J Physiol; 1992 Apr; 449():295-311. PubMed ID: 1326047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of vasoactive intestinal polypeptide (VIP)-mediated relaxation by nitric oxide and prostanoids in the rabbit corpus cavernosum.
    Kim YC; Kim JH; Davies MG; Hagen PO; Carson CC
    J Urol; 1995 Mar; 153(3 Pt 1):807-10. PubMed ID: 7861544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of potassium channel blockers on relaxations to a nitric oxide donor and to nonadrenergic nerve stimulation in guinea pig trachea.
    Ellis JL; Conanan ND
    J Pharmacol Exp Ther; 1994 Nov; 271(2):782-6. PubMed ID: 7525941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of the L-arginine: nitric oxide pathway in nonadrenergic noncholinergic relaxation of the cat gastric fundus.
    Barbier AJ; Lefebvre RA
    J Pharmacol Exp Ther; 1993 Jul; 266(1):172-8. PubMed ID: 8331556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition of functional innervation in the developing porcine airway from nitrergic to catecholaminergic.
    Connellan DR; Mitchell HW
    Br J Pharmacol; 1998 Feb; 123(4):712-8. PubMed ID: 9517391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a role for nitric oxide in relation of the frog oesophageal body to electrical field stimulation.
    Williams SJ; Parsons ME
    Br J Pharmacol; 1997 Sep; 122(1):179-85. PubMed ID: 9298545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a differential release of nitric oxide and vasoactive intestinal polypeptide by nonadrenergic noncholinergic nerves in the rat gastric fundus.
    Boeckxstaens GE; Pelckmans PA; De Man JG; Bult H; Herman AG; Van Maercke YM
    Arch Int Pharmacodyn Ther; 1992; 318():107-15. PubMed ID: 1463368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The L-arginine/nitric oxide pathway in the rabbit urethral lamina propria.
    Zygmunt PK; Persson K; Alm P; Larsson B; Andersson KE
    Acta Physiol Scand; 1993 Aug; 148(4):431-9. PubMed ID: 8213197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of NANC neural bronchoconstriction in vivo in the guinea-pig: involvement of nitric oxide, vasoactive intestinal peptide and soluble guanylyl cyclase.
    Lei YH; Barnes PJ; Rogers DF
    Br J Pharmacol; 1993 Jan; 108(1):228-35. PubMed ID: 7679032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for the participation of the L-arginine-nitric oxide pathway in neurally induced relaxation of the isolated rat duodenum.
    Martins SR; Bicudo R; Oliveira RB; Ballejo G
    Braz J Med Biol Res; 1993 Dec; 26(12):1325-35. PubMed ID: 8136734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.