BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 14565762)

  • 1. 1H NMR pattern recognition and 31P NMR studies with d-Serine in rat urine and kidney, time- and dose-related metabolic effects.
    Williams RE; Jacobsen M; Lock EA
    Chem Res Toxicol; 2003 Oct; 16(10):1207-16. PubMed ID: 14565762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium benzoate attenuates D-serine induced nephrotoxicity in the rat.
    Williams RE; Lock EA
    Toxicology; 2005 Feb; 207(1):35-48. PubMed ID: 15590120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. D-Serine-induced nephrotoxicity: a HPLC-TOF/MS-based metabonomics approach.
    Williams RE; Major H; Lock EA; Lenz EM; Wilson ID
    Toxicology; 2005 Feb; 207(2):179-90. PubMed ID: 15596249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton NMR spectra of urine as indicators of renal damage. Mercury-induced nephrotoxicity in rats.
    Nicholson JK; Timbrell JA; Sadler PJ
    Mol Pharmacol; 1985 Jun; 27(6):644-51. PubMed ID: 2860559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response.
    Soto A; DelRaso NJ; Schlager JJ; Chan VT
    Toxicology; 2008 Jan; 243(1-2):177-92. PubMed ID: 18061331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabonomic deconvolution of embedded toxicity: application to thioacetamide hepato- and nephrotoxicity.
    Waters NJ; Waterfield CJ; Farrant RD; Holmes E; Nicholson JK
    Chem Res Toxicol; 2005 Apr; 18(4):639-54. PubMed ID: 15833024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why is D-serine nephrotoxic and alpha-aminoisobutyric acid protective?
    Krug AW; Völker K; Dantzler WH; Silbernagl S
    Am J Physiol Renal Physiol; 2007 Jul; 293(1):F382-90. PubMed ID: 17429029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. D-serine-induced nephrotoxicity: possible interaction with tyrosine metabolism.
    Williams RE; Lock EA
    Toxicology; 2004 Sep; 201(1-3):231-8. PubMed ID: 15297036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pattern recognition classification of the site of nephrotoxicity based on metabolic data derived from proton nuclear magnetic resonance spectra of urine.
    Anthony ML; Sweatman BC; Beddell CR; Lindon JC; Nicholson JK
    Mol Pharmacol; 1994 Jul; 46(1):199-211. PubMed ID: 8058053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic profiling studies on the toxicological effects of realgar in rats by (1)H NMR spectroscopy.
    Wei L; Liao P; Wu H; Li X; Pei F; Li W; Wu Y
    Toxicol Appl Pharmacol; 2009 Feb; 234(3):314-25. PubMed ID: 19073202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. D-serine nephrotoxicity. The nature of proteinuria, glucosuria, and aminoaciduria in acute tubular necrosis.
    Carone FA; Ganote CE
    Arch Pathol; 1975 Dec; 99(12):658-62. PubMed ID: 1203037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of time-related metabolic fluctuations induced by ethionine in the rat.
    Skordi E; Yap IK; Claus SP; Martin FP; Cloarec O; Lindberg J; Schuppe-Koistinen I; Holmes E; Nicholson JK
    J Proteome Res; 2007 Dec; 6(12):4572-81. PubMed ID: 17966971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of a novel indolin-2-ketone compound Z24 induced hepatotoxicity by NMR-spectroscopy-based metabonomics of rat urine, blood plasma, and liver extracts.
    Wang Q; Jiang Y; Wu C; Zhao J; Yu S; Yuan B; Yan X; Liao M
    Toxicol Appl Pharmacol; 2006 Aug; 215(1):71-82. PubMed ID: 16584752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear magnetic resonance spectroscopic and principal components analysis investigations into biochemical effects of three model hepatotoxins.
    Beckwith-Hall BM; Nicholson JK; Nicholls AW; Foxall PJ; Lindon JC; Connor SC; Abdi M; Connelly J; Holmes E
    Chem Res Toxicol; 1998 Apr; 11(4):260-72. PubMed ID: 9548796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of oxidative stress in D-serine induced nephrotoxicity.
    Orozco-Ibarra M; Medina-Campos ON; Sánchez-González DJ; Martínez-Martínez CM; Floriano-Sánchez E; Santamaría A; Ramirez V; Bobadilla NA; Pedraza-Chaverri J
    Toxicology; 2007 Jan; 229(1-2):123-35. PubMed ID: 17110013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicometabolomics approach to urinary biomarkers for mercuric chloride (HgCl₂)-induced nephrotoxicity using proton nuclear magnetic resonance (¹H NMR) in rats.
    Kim KB; Um SY; Chung MW; Jung SC; Oh JS; Kim SH; Na HS; Lee BM; Choi KH
    Toxicol Appl Pharmacol; 2010 Dec; 249(2):114-26. PubMed ID: 20804780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxic actions of dinoseb in medaka (Oryzias latipes) embryos as determined by in vivo 31P NMR, HPLC-UV and 1H NMR metabolomics.
    Viant MR; Pincetich CA; Hinton DE; Tjeerdema RS
    Aquat Toxicol; 2006 Mar; 76(3-4):329-42. PubMed ID: 16290222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Urinary proton magnetic resonance studies of early ifosfamide-induced nephrotoxicity and encephalopathy.
    Foxall PJ; Singer JM; Hartley JM; Neild GH; Lapsley M; Nicholson JK; Souhami RL
    Clin Cancer Res; 1997 Sep; 3(9):1507-18. PubMed ID: 9815837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional, biochemical, and pathological effects of repeated oral administration of ochratoxin A to rats.
    Mally A; Völkel W; Amberg A; Kurz M; Wanek P; Eder E; Hard G; Dekant W
    Chem Res Toxicol; 2005 Aug; 18(8):1242-52. PubMed ID: 16097797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated pathway analysis of rat urine metabolic profiles and kidney transcriptomic profiles to elucidate the systems toxicology of model nephrotoxicants.
    Xu EY; Perlina A; Vu H; Troth SP; Brennan RJ; Aslamkhan AG; Xu Q
    Chem Res Toxicol; 2008 Aug; 21(8):1548-61. PubMed ID: 18656965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.