These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 14565766)
1. Formation of vinylogous compounds in model Maillard reaction systems. Stadler RH; Verzegnassi L; Varga N; Grigorov M; Studer A; Riediker S; Schilter B Chem Res Toxicol; 2003 Oct; 16(10):1242-50. PubMed ID: 14565766 [TBL] [Abstract][Full Text] [Related]
2. In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the maillard reaction. Stadler RH; Robert F; Riediker S; Varga N; Davidek T; Devaud S; Goldmann T; Hau J; Blank I J Agric Food Chem; 2004 Aug; 52(17):5550-8. PubMed ID: 15315399 [TBL] [Abstract][Full Text] [Related]
3. Formation of styrene during the Maillard reaction is negligible. Goldmann T; Davidek T; Gouezec E; Blank I; Bertholet MC; Stadler R Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 May; 26(5):583-94. PubMed ID: 19680933 [TBL] [Abstract][Full Text] [Related]
4. Acrylamide is formed in the Maillard reaction. Mottram DS; Wedzicha BL; Dodson AT Nature; 2002 Oct; 419(6906):448-9. PubMed ID: 12368844 [TBL] [Abstract][Full Text] [Related]
5. Investigations on the effect of amino acids on acrylamide, pyrazines, and Michael addition products in model systems. Koutsidis G; Simons SP; Thong YH; Haldoupis Y; Mojica-Lazaro J; Wedzicha BL; Mottram DS J Agric Food Chem; 2009 Oct; 57(19):9011-5. PubMed ID: 19739658 [TBL] [Abstract][Full Text] [Related]
6. Acrylamide from Maillard reaction products. Stadler RH; Blank I; Varga N; Robert F; Hau J; Guy PA; Robert MC; Riediker S Nature; 2002 Oct; 419(6906):449-50. PubMed ID: 12368845 [TBL] [Abstract][Full Text] [Related]
7. Impact of harvest year on amino acids and sugars in potatoes and effect on acrylamide formation during frying. Viklund GA; Olsson KM; Sjöholm IM; Skog KI J Agric Food Chem; 2008 Aug; 56(15):6180-4. PubMed ID: 18624433 [TBL] [Abstract][Full Text] [Related]
8. The effect of sugar, amino acid, metal ion, and NaCl on model Maillard reaction under pH control. Kwak EJ; Lim SI Amino Acids; 2004 Aug; 27(1):85-90. PubMed ID: 15309575 [TBL] [Abstract][Full Text] [Related]
9. Copper/amino acid catalyzed cross-couplings of aryl and vinyl halides with nucleophiles. Ma D; Cai Q Acc Chem Res; 2008 Nov; 41(11):1450-60. PubMed ID: 18698852 [TBL] [Abstract][Full Text] [Related]
10. Formation of furan and methylfuran by maillard-type reactions in model systems and food. Limacher A; Kerler J; Davidek T; Schmalzried F; Blank I J Agric Food Chem; 2008 May; 56(10):3639-47. PubMed ID: 18439018 [TBL] [Abstract][Full Text] [Related]
11. Gas chromatographic investigation of acrylamide formation in browning model systems. Yasuhara A; Tanaka Y; Hengel M; Shibamoto T J Agric Food Chem; 2003 Jul; 51(14):3999-4003. PubMed ID: 12822936 [TBL] [Abstract][Full Text] [Related]
12. Acrylamide and pyrazine formation in model systems containing asparagine. Koutsidis G; De la Fuente A; Dimitriou C; Kakoulli A; Wedzicha BL; Mottram DS J Agric Food Chem; 2008 Aug; 56(15):6105-12. PubMed ID: 18624441 [TBL] [Abstract][Full Text] [Related]
13. Enolization and racemization reactions of glucose and fructose on heating with amino-acid enantiomers and the formation of melanoidins as a result of the Maillard reaction. Kim JS; Lee YS Amino Acids; 2009 Mar; 36(3):465-74. PubMed ID: 18496645 [TBL] [Abstract][Full Text] [Related]
14. Quantitation of 3-aminopropionamide in potatoes-a minor but potent precursor in acrylamide formation. Granvogl M; Jezussek M; Koehler P; Schieberle P J Agric Food Chem; 2004 Jul; 52(15):4751-7. PubMed ID: 15264910 [TBL] [Abstract][Full Text] [Related]
15. The role of creatine in the generation of N-methylacrylamide: a new toxicant in cooked meat. Yaylayan VA; Locas CP; Wnorowski A; O'Brien J J Agric Food Chem; 2004 Aug; 52(17):5559-65. PubMed ID: 15315400 [TBL] [Abstract][Full Text] [Related]
16. Thermally generated 3-aminopropionamide as a transient intermediate in the formation of acrylamide. Granvogl M; Schieberle P J Agric Food Chem; 2006 Aug; 54(16):5933-8. PubMed ID: 16881697 [TBL] [Abstract][Full Text] [Related]
17. Toward a kinetic model for acrylamide formation in a glucose-asparagine reaction system. Knol JJ; van Loon WA; Linssen JP; Ruck AL; van Boekel MA; Voragen AG J Agric Food Chem; 2005 Jul; 53(15):6133-9. PubMed ID: 16029007 [TBL] [Abstract][Full Text] [Related]
18. Contribution of lipid oxidation products to acrylamide formation in model systems. Zamora R; Hidalgo FJ J Agric Food Chem; 2008 Aug; 56(15):6075-80. PubMed ID: 18624449 [TBL] [Abstract][Full Text] [Related]
19. Factors that influence the acrylamide content of heated foods. Rydberg P; Eriksson S; Tareke E; Karlsson P; Ehrenberg L; Törnqvist M Adv Exp Med Biol; 2005; 561():317-28. PubMed ID: 16438308 [TBL] [Abstract][Full Text] [Related]
20. Kinetic models as a route to control acrylamide formation in food. Wedzicha BL; Mottram DS; Elmore JS; Koutsidis G; Dodson AT Adv Exp Med Biol; 2005; 561():235-53. PubMed ID: 16438302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]