BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 14565978)

  • 21. Phosphorylation regulates the dynamic interaction of RCC1 with chromosomes during mitosis.
    Hutchins JR; Moore WJ; Hood FE; Wilson JS; Andrews PD; Swedlow JR; Clarke PR
    Curr Biol; 2004 Jun; 14(12):1099-104. PubMed ID: 15203004
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disruption of the ran system by cysteine oxidation of the nucleotide exchange factor RCC1.
    Chatterjee M; Paschal BM
    Mol Cell Biol; 2015 Feb; 35(3):566-81. PubMed ID: 25452301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The thermolability of nuclear protein import in tsBN2 cells is suppressed by microinjected Ran-GTP or Ran-GDP, but not by RanQ69L or RanT24N.
    Dickmanns A; Bischoff FR; Marshallsay C; Lührmann R; Ponstingl H; Fanning E
    J Cell Sci; 1996 Jun; 109 ( Pt 6)():1449-57. PubMed ID: 8799832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Caffeine mimics adenine and 2'-deoxyadenosine, both of which inhibit the guanine-nucleotide exchange activity of RCC1 and the kinase activity of ATR.
    Nishijima H; Nishitani H; Saito N; Nishimoto T
    Genes Cells; 2003 May; 8(5):423-35. PubMed ID: 12694532
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of chromatin binding by a conformational switch in the tail of the Ran exchange factor RCC1.
    Hao Y; Macara IG
    J Cell Biol; 2008 Sep; 182(5):827-36. PubMed ID: 18762580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Requirement of guanosine triphosphate-bound ran for signal-mediated nuclear protein export.
    Richards SA; Carey KL; Macara IG
    Science; 1997 Jun; 276(5320):1842-4. PubMed ID: 9188526
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of a RanGTP-regulated gradient in mitotic somatic cells.
    Kaláb P; Pralle A; Isacoff EY; Heald R; Weis K
    Nature; 2006 Mar; 440(7084):697-701. PubMed ID: 16572176
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of the nuclear GTP-binding protein Ran with its regulatory proteins RCC1 and RanGAP1.
    Klebe C; Bischoff FR; Ponstingl H; Wittinghofer A
    Biochemistry; 1995 Jan; 34(2):639-47. PubMed ID: 7819259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts.
    Zhang C; Clarke PR
    Science; 2000 May; 288(5470):1429-32. PubMed ID: 10827954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The nuclear import of RCC1 requires a specific nuclear localization sequence receptor, karyopherin alpha3/Qip.
    Talcott B; Moore MS
    J Biol Chem; 2000 Apr; 275(14):10099-104. PubMed ID: 10744690
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hyperosmotic stress signaling to the nucleus disrupts the Ran gradient and the production of RanGTP.
    Kelley JB; Paschal BM
    Mol Biol Cell; 2007 Nov; 18(11):4365-76. PubMed ID: 17761537
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A mutant form of the Ran/TC4 protein disrupts nuclear function in Xenopus laevis egg extracts by inhibiting the RCC1 protein, a regulator of chromosome condensation.
    Dasso M; Seki T; Azuma Y; Ohba T; Nishimoto T
    EMBO J; 1994 Dec; 13(23):5732-44. PubMed ID: 7988569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphoinositide 3-kinase beta protects nuclear envelope integrity by controlling RCC1 localization and Ran activity.
    Redondo-Muñoz J; Pérez-García V; Rodríguez MJ; Valpuesta JM; Carrera AC
    Mol Cell Biol; 2015 Jan; 35(1):249-63. PubMed ID: 25348717
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The view from Awaji island: past, present, and future of RCC1 and the Ran GTPase system.
    Sazer S
    Dev Cell; 2005 Dec; 9(6):729-33. PubMed ID: 16363093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromatin binding of RCC1 during mitosis is important for its nuclear localization in interphase.
    Furuta M; Hori T; Fukagawa T
    Mol Biol Cell; 2016 Jan; 27(2):371-81. PubMed ID: 26564799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of Cdc2/cyclin B activation by Ran, a Ras-related GTPase.
    Clarke PR; Klebe C; Wittinghofer A; Karsenti E
    J Cell Sci; 1995 Mar; 108 ( Pt 3)():1217-25. PubMed ID: 7622606
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influenza virus ribonucleoprotein complexes gain preferential access to cellular export machinery through chromatin targeting.
    Chase GP; Rameix-Welti MA; Zvirbliene A; Zvirblis G; Götz V; Wolff T; Naffakh N; Schwemmle M
    PLoS Pathog; 2011 Sep; 7(9):e1002187. PubMed ID: 21909257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Systems analysis of Ran transport.
    Smith AE; Slepchenko BM; Schaff JC; Loew LM; Macara IG
    Science; 2002 Jan; 295(5554):488-91. PubMed ID: 11799242
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Importin-beta is a GDP-to-GTP exchange factor of Ran: implications for the mechanism of nuclear import.
    Lonhienne TG; Forwood JK; Marfori M; Robin G; Kobe B; Carroll BJ
    J Biol Chem; 2009 Aug; 284(34):22549-58. PubMed ID: 19549784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RanBP1 governs spindle assembly by defining mitotic Ran-GTP production.
    Zhang MS; Arnaoutov A; Dasso M
    Dev Cell; 2014 Nov; 31(4):393-404. PubMed ID: 25458009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.