These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Impact of online visual feedback on motor acquisition and retention when learning to reach in a force field. Batcho CS; Gagné M; Bouyer LJ; Roy JS; Mercier C Neuroscience; 2016 Nov; 337():267-275. PubMed ID: 27646292 [TBL] [Abstract][Full Text] [Related]
3. Adaptation and spatial generalization to a triaxial visuomotor perturbation in a virtual reality environment. Lefrançois C; Messier J Exp Brain Res; 2019 Mar; 237(3):793-803. PubMed ID: 30607472 [TBL] [Abstract][Full Text] [Related]
4. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment. Bourdin C; Bringoux L; Gauthier GM; Vercher JL Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935 [TBL] [Abstract][Full Text] [Related]
5. Divided attention impairs human motor adaptation but not feedback control. Taylor JA; Thoroughman KA J Neurophysiol; 2007 Jul; 98(1):317-26. PubMed ID: 17460104 [TBL] [Abstract][Full Text] [Related]
6. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements. Scheidt RA; Conditt MA; Secco EL; Mussa-Ivaldi FA J Neurophysiol; 2005 Jun; 93(6):3200-13. PubMed ID: 15659526 [TBL] [Abstract][Full Text] [Related]
7. Adaptation of reach-to-grasp movement in response to force perturbations. Rand MK; Shimansky Y; Stelmach GE; Bloedel JR Exp Brain Res; 2004 Jan; 154(1):50-65. PubMed ID: 14530893 [TBL] [Abstract][Full Text] [Related]
8. Time course of changes in the long-latency feedback response parallels the fast process of short-term motor adaptation. Coltman SK; Gribble PL J Neurophysiol; 2020 Aug; 124(2):388-399. PubMed ID: 32639925 [TBL] [Abstract][Full Text] [Related]
9. The decay of motor adaptation to novel movement dynamics reveals an asymmetry in the stability of motion state-dependent learning. Hosseini EA; Nguyen KP; Joiner WM PLoS Comput Biol; 2017 May; 13(5):e1005492. PubMed ID: 28481891 [TBL] [Abstract][Full Text] [Related]
10. Characterization of age-related modifications of upper limb motor control strategies in a new dynamic environment. Cesqui B; Macrì G; Dario P; Micera S J Neuroeng Rehabil; 2008 Nov; 5():31. PubMed ID: 19019228 [TBL] [Abstract][Full Text] [Related]
11. Modulation of error-sensitivity during a prism adaptation task in people with cerebellar degeneration. Hanajima R; Shadmehr R; Ohminami S; Tsutsumi R; Shirota Y; Shimizu T; Tanaka N; Terao Y; Tsuji S; Ugawa Y; Uchimura M; Inoue M; Kitazawa S J Neurophysiol; 2015 Oct; 114(4):2460-71. PubMed ID: 26311179 [TBL] [Abstract][Full Text] [Related]
12. Beside the point: motor adaptation without feedback-based error correction in task-irrelevant conditions. Schaefer SY; Shelly IL; Thoroughman KA J Neurophysiol; 2012 Feb; 107(4):1247-56. PubMed ID: 22157120 [TBL] [Abstract][Full Text] [Related]
13. Influence of interaction force levels on degree of motor adaptation in a stable dynamic force field. Lai EJ; Hodgson AJ; Milner TE Exp Brain Res; 2003 Nov; 153(1):76-83. PubMed ID: 12955384 [TBL] [Abstract][Full Text] [Related]
14. Novel strategies in feedforward adaptation to a position-dependent perturbation. Hinder MR; Milner TE Exp Brain Res; 2005 Aug; 165(2):239-49. PubMed ID: 15856204 [TBL] [Abstract][Full Text] [Related]
15. Temporal specificity of the initial adaptive response in motor adaptation. Joiner WM; Sing GC; Smith MA PLoS Comput Biol; 2017 Jul; 13(7):e1005438. PubMed ID: 28692658 [TBL] [Abstract][Full Text] [Related]
16. Shared internal models for feedforward and feedback control. Wagner MJ; Smith MA J Neurosci; 2008 Oct; 28(42):10663-73. PubMed ID: 18923042 [TBL] [Abstract][Full Text] [Related]
17. Impact of Parkinson's disease and dopaminergic medication on adaptation to explicit and implicit visuomotor perturbations. Mongeon D; Blanchet P; Messier J Brain Cogn; 2013 Mar; 81(2):271-82. PubMed ID: 23313834 [TBL] [Abstract][Full Text] [Related]
18. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques. Pigeon P; Bortolami SB; DiZio P; Lackner JR J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179 [TBL] [Abstract][Full Text] [Related]
19. Rapid adaptation to Coriolis force perturbations of arm trajectory. Lackner JR; Dizio P J Neurophysiol; 1994 Jul; 72(1):299-313. PubMed ID: 7965013 [TBL] [Abstract][Full Text] [Related]
20. Influence of haptic guidance in learning a novel visuomotor task. van Asseldonk EH; Wessels M; Stienen AH; van der Helm FC; van der Kooij H J Physiol Paris; 2009; 103(3-5):276-85. PubMed ID: 19665551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]