These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 14566779)
1. A biodegradable polyurethane-ascorbic acid scaffold for bone tissue engineering. Zhang J; Doll BA; Beckman EJ; Hollinger JO J Biomed Mater Res A; 2003 Nov; 67(2):389-400. PubMed ID: 14566779 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional biocompatible ascorbic acid-containing scaffold for bone tissue engineering. Zhang JY; Doll BA; Beckman EJ; Hollinger JO Tissue Eng; 2003 Dec; 9(6):1143-57. PubMed ID: 14670102 [TBL] [Abstract][Full Text] [Related]
3. A new peptide-based urethane polymer: synthesis, biodegradation, and potential to support cell growth in vitro. Zhang JY; Beckman EJ; Piesco NP; Agarwal S Biomaterials; 2000 Jun; 21(12):1247-58. PubMed ID: 10811306 [TBL] [Abstract][Full Text] [Related]
4. LDI-glycerol polyurethane implants exhibit controlled release of DB-67 and anti-tumor activity in vitro against malignant gliomas. Sivak WN; Pollack IF; Petoud S; Zamboni WC; Zhang J; Beckman EJ Acta Biomater; 2008 Jul; 4(4):852-62. PubMed ID: 18440882 [TBL] [Abstract][Full Text] [Related]
5. Catalyst-dependent drug loading of LDI-glycerol polyurethane foams leads to differing controlled release profiles. Sivak WN; Pollack IF; Petoud S; Zamboni WC; Zhang J; Beckman EJ Acta Biomater; 2008 Sep; 4(5):1263-74. PubMed ID: 18440884 [TBL] [Abstract][Full Text] [Related]
6. Incorporation of ionic ligands accelerates drug release from LDI-glycerol polyurethanes. Sivak WN; Zhang J; Petoud S; Beckman EJ Acta Biomater; 2010 Jan; 6(1):144-53. PubMed ID: 19524075 [TBL] [Abstract][Full Text] [Related]
7. Targeted delivery system for juxtacrine signaling growth factor based on rhBMP-2-mediated carrier-protein conjugation. Liu HW; Chen CH; Tsai CL; Hsiue GH Bone; 2006 Oct; 39(4):825-36. PubMed ID: 16782421 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, biodegradability, and biocompatibility of lysine diisocyanate-glucose polymers. Zhang JY; Beckman EJ; Hu J; Yang GG; Agarwal S; Hollinger JO Tissue Eng; 2002 Oct; 8(5):771-85. PubMed ID: 12459056 [TBL] [Abstract][Full Text] [Related]
9. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro. Akay G; Birch MA; Bokhari MA Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous drug release at different rates from biodegradable polyurethane foams. Sivak WN; Zhang J; Petoud S; Beckman EJ Acta Biomater; 2009 Sep; 5(7):2398-408. PubMed ID: 19398389 [TBL] [Abstract][Full Text] [Related]
11. Proliferation and osteogenic differentiation of mesenchymal stem cells cultured onto three different polymers in vitro. Jäger M; Feser T; Denck H; Krauspe R Ann Biomed Eng; 2005 Oct; 33(10):1319-32. PubMed ID: 16240081 [TBL] [Abstract][Full Text] [Related]
12. Both direct and collagen-mediated signals are required for active vitamin D3-elicited differentiation of human osteoblastic cells: roles of osterix, an osteoblast-related transcription factor. Maehata Y; Takamizawa S; Ozawa S; Kato Y; Sato S; Kubota E; Hata R Matrix Biol; 2006 Jan; 25(1):47-58. PubMed ID: 16266799 [TBL] [Abstract][Full Text] [Related]
13. Exogenous recombinant human BMP-2 has little initial effects on human osteoblastic cells cultured on collagen type I coated/noncoated hydroxyapatite ceramic granules. Turhani D; Weissenböck M; Stein E; Wanschitz F; Ewers R J Oral Maxillofac Surg; 2007 Mar; 65(3):485-93. PubMed ID: 17307597 [TBL] [Abstract][Full Text] [Related]
14. Photopolymerized thermosensitive hydrogels: synthesis, degradation, and cytocompatibility. Vermonden T; Fedorovich NE; van Geemen D; Alblas J; van Nostrum CF; Dhert WJ; Hennink WE Biomacromolecules; 2008 Mar; 9(3):919-26. PubMed ID: 18288801 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional composites manufactured with human mesenchymal cambial layer precursor cells as an alternative for sinus floor augmentation: an in vitro study. Turhani D; Watzinger E; Weissenböck M; Yerit K; Cvikl B; Thurnher D; Ewers R Clin Oral Implants Res; 2005 Aug; 16(4):417-24. PubMed ID: 16117765 [TBL] [Abstract][Full Text] [Related]
16. Invitro study of adherent mandibular osteoblast-like cells on carrier materials. Turhani D; Weissenböck M; Watzinger E; Yerit K; Cvikl B; Ewers R; Thurnher D Int J Oral Maxillofac Surg; 2005 Jul; 34(5):543-50. PubMed ID: 16053876 [TBL] [Abstract][Full Text] [Related]
17. Bone cell responses to the composite of Ricinus communis polyurethane and alkaline phosphatase. Beloti MM; de Oliveira PT; Tagliani MM; Rosa AL J Biomed Mater Res A; 2008 Feb; 84(2):435-41. PubMed ID: 17618485 [TBL] [Abstract][Full Text] [Related]
18. BMP-2 exerts differential effects on differentiation of rabbit bone marrow stromal cells grown in two-dimensional and three-dimensional systems and is required for in vitro bone formation in a PLGA scaffold. Huang W; Carlsen B; Wulur I; Rudkin G; Ishida K; Wu B; Yamaguchi DT; Miller TA Exp Cell Res; 2004 Oct; 299(2):325-34. PubMed ID: 15350532 [TBL] [Abstract][Full Text] [Related]
19. Expansion and osteogenic differentiation of bone marrow-derived mesenchymal stem cells on a vitamin C functionalized polymer. Wang Y; Singh A; Xu P; Pindrus MA; Blasioli DJ; Kaplan DL Biomaterials; 2006 Jun; 27(17):3265-73. PubMed ID: 16494940 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Guelcher SA; Gallagher KM; Didier JE; Klinedinst DB; Doctor JS; Goldstein AS; Wilkes GL; Beckman EJ; Hollinger JO Acta Biomater; 2005 Jul; 1(4):471-84. PubMed ID: 16701828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]