BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 14566804)

  • 41. Assessment of poly(methacrylic acid-co-N-vinyl pyrrolidone) as a carrier for the oral delivery of therapeutic proteins using Caco-2 and HT29-MTX cell lines.
    Carr DA; Peppas NA
    J Biomed Mater Res A; 2010 Feb; 92(2):504-12. PubMed ID: 19213059
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Radiation synthesis of multifunctional polymeric hydrogels for oral delivery of insulin.
    Abou Taleb MF
    Int J Biol Macromol; 2013 Nov; 62():341-7. PubMed ID: 24055698
    [TBL] [Abstract][Full Text] [Related]  

  • 43. pH-Responsive Hydrogels with Dispersed Hydrophobic Nanoparticles for the Delivery of Hydrophobic Therapeutic Agents.
    Schoener CA; Hutson HN; Peppas NA
    Polym Int; 2012 Jun; 61(6):874-879. PubMed ID: 23087546
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Gastrointestinal transit and mucoadhesive characteristics of complexation hydrogels in rats.
    Goto T; Morishita M; Kavimandan NJ; Takayama K; Peppas NA
    J Pharm Sci; 2006 Feb; 95(2):462-9. PubMed ID: 16381013
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Novel delivery system based on complexation hydrogels as delivery vehicles for insulin-transferrin conjugates.
    Kavimandan NJ; Losi E; Peppas NA
    Biomaterials; 2006 Jul; 27(20):3846-54. PubMed ID: 16529810
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantifying Tight Junction Disruption Caused by Biomimetic pH-Sensitive Hydrogel Drug Carriers.
    Fisher OZ; Peppas NA
    J Drug Deliv Sci Technol; 2008 Jan; 18(1):47-50. PubMed ID: 21686051
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication and characterization of a novel semi-interpenetrating network hydrogel based on sodium carboxymethyl cellulose and poly(methacrylic acid) for oral insulin delivery.
    Li S; Chen Z; Wang J; Yan L; Chen T; Zeng Q
    J Biomater Appl; 2020 Jul; 35(1):3-14. PubMed ID: 32216507
    [TBL] [Abstract][Full Text] [Related]  

  • 48. pH-responsive hydrogels with dispersed hydrophobic nanoparticles for the oral delivery of chemotherapeutics.
    Schoener CA; Hutson HN; Peppas NA
    J Biomed Mater Res A; 2013 Aug; 101(8):2229-36. PubMed ID: 23281185
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of cytotoxicity of surfactants used in self-micro emulsifying drug delivery systems and their effects on paracellular transport in Caco-2 cell monolayer.
    Ujhelyi Z; Fenyvesi F; Váradi J; Fehér P; Kiss T; Veszelka S; Deli M; Vecsernyés M; Bácskay I
    Eur J Pharm Sci; 2012 Oct; 47(3):564-73. PubMed ID: 22841998
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of smart delivery system for ascorbic acid using pH-responsive P(MAA-co-EGMA) hydrogel microparticles.
    Lee E; Kim K; Choi M; Lee Y; Park JW; Kim B
    Drug Deliv; 2010 Nov; 17(8):573-80. PubMed ID: 20626233
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vitro evaluation of quaternized polydimethylaminoethylmethacrylate sub-microparticles for oral insulin delivery.
    Sonia TA; Sharma CP
    J Biomater Appl; 2013 Jul; 28(1):62-73. PubMed ID: 22718950
    [TBL] [Abstract][Full Text] [Related]  

  • 52. pH-responsive and enzymatically-responsive hydrogel microparticles for the oral delivery of therapeutic proteins: Effects of protein size, crosslinking density, and hydrogel degradation on protein delivery.
    Koetting MC; Guido JF; Gupta M; Zhang A; Peppas NA
    J Control Release; 2016 Jan; 221():18-25. PubMed ID: 26616761
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SEDDS for intestinal absorption of insulin: Application of Caco-2 and Caco-2/HT29 co-culture monolayers and intra-jejunal instillation in rats.
    Liu J; Werner U; Funke M; Besenius M; Saaby L; Fanø M; Mu H; Müllertz A
    Int J Pharm; 2019 Apr; 560():377-384. PubMed ID: 30790612
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photo-cross-linked biodegradable hydrogels based on n-arm-poly(ethylene glycol), poly(ε-caprolactone) and/or methacrylic acid for controlled drug release.
    Hou P; Zhang N; Wu R; Xu W; Hou Z
    J Biomater Appl; 2017 Oct; 32(4):511-523. PubMed ID: 28899224
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Complexation Hydrogels for the Oral Delivery of Growth Hormone and Salmon Calcitonin.
    Carr DA; Gómez-Burgaz M; Boudes MC; Peppas NA
    Ind Eng Chem Res; 2010 Sep; 49(23):11991-11995. PubMed ID: 21344059
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers.
    Shrestha N; Shahbazi MA; Araújo F; Zhang H; Mäkilä EM; Kauppila J; Sarmento B; Salonen JJ; Hirvonen JT; Santos HA
    Biomaterials; 2014 Aug; 35(25):7172-9. PubMed ID: 24844163
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Permeability enhancing effects of the alkylglycoside, octylglucoside, on insulin permeation across epithelial membrane in vitro.
    Tirumalasetty PP; Eley JG
    J Pharm Pharm Sci; 2006; 9(1):32-9. PubMed ID: 16849006
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cellular evaluation of oral chemotherapy carriers.
    Blanchette J; Peppas NA
    J Biomed Mater Res A; 2005 Mar; 72(4):381-8. PubMed ID: 15666363
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Uptake and transport of PEG-graft-trimethyl-chitosan copolymer-insulin nanocomplexes by epithelial cells.
    Mao S; Germershaus O; Fischer D; Linn T; Schnepf R; Kissel T
    Pharm Res; 2005 Dec; 22(12):2058-68. PubMed ID: 16170693
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of pH-responsive hydrogels of poly(itaconic acid-g-ethylene glycol) prepared by UV-initiated free radical polymerization as biomaterials for oral delivery of bioactive agents.
    Betancourt T; Pardo J; Soo K; Peppas NA
    J Biomed Mater Res A; 2010 Apr; 93(1):175-88. PubMed ID: 19536838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.