BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 14567982)

  • 1. Disruption of microtubules inhibits cytoplasmic ribonucleoprotein stress granule formation.
    Ivanov PA; Chudinova EM; Nadezhdina ES
    Exp Cell Res; 2003 Nov; 290(2):227-33. PubMed ID: 14567982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNP stress-granule formation is inhibited by microtubule disruption.
    Ivanov PA; Chudinova EM; Nadezhdina ES
    Cell Biol Int; 2003; 27(3):207-8. PubMed ID: 12681309
    [No Abstract]   [Full Text] [Related]  

  • 3. [Is the microtubule disruption-induced alteration of peroxide concentration a factor inhibiting the assembly of ribonucleoprotein stress granules?].
    Chudinova EM; Nadezhdina ES; Ivanov PA
    Biofizika; 2010; 55(5):857-61. PubMed ID: 21033352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of acrylamide, latrunculin, and nocodazole on intracellular transport and cytoskeletal organization in melanophores.
    Aspengren S; Wielbass L; Wallin M
    Cell Motil Cytoskeleton; 2006 Jul; 63(7):423-36. PubMed ID: 16671098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microtubules, but not actin filaments, drive daughter cell budding and cell division in Toxoplasma gondii.
    Shaw MK; Compton HL; Roos DS; Tilney LG
    J Cell Sci; 2000 Apr; 113 ( Pt 7)():1241-54. PubMed ID: 10704375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of PGE(2) and PGI(2) release from human umbilical vein endothelial cells by actin cytoskeleton.
    Sawyer SJ; Norvell SM; Ponik SM; Pavalko FM
    Am J Physiol Cell Physiol; 2001 Sep; 281(3):C1038-45. PubMed ID: 11502582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of the expression of connective tissue growth factor by alterations of the cytoskeleton.
    Ott C; Iwanciw D; Graness A; Giehl K; Goppelt-Struebe M
    J Biol Chem; 2003 Nov; 278(45):44305-11. PubMed ID: 12951326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insulin promotes formation of polymerized microtubules by a phosphatidylinositol 3-kinase-independent, actin-dependent pathway in 3T3-L1 adipocytes.
    Olson AL; Eyster CA; Duggins QS; Knight JB
    Endocrinology; 2003 Nov; 144(11):5030-9. PubMed ID: 12959978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shigella flexneri modulates stress granule composition and inhibits stress granule aggregation.
    Vonaesch P; Campbell-Valois FX; Dufour A; Sansonetti PJ; Schnupf P
    Cell Microbiol; 2016 Jul; 18(7):982-97. PubMed ID: 27282465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential requirement of F-actin and microtubule cytoskeleton in cue-induced local protein synthesis in axonal growth cones.
    Piper M; Lee AC; van Horck FP; McNeilly H; Lu TB; Harris WA; Holt CE
    Neural Dev; 2015 Feb; 10():3. PubMed ID: 25886013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysophosphatidic acid and microtubule-destabilizing agents stimulate fibronectin matrix assembly through Rho-dependent actin stress fiber formation and cell contraction.
    Zhang Q; Magnusson MK; Mosher DF
    Mol Biol Cell; 1997 Aug; 8(8):1415-25. PubMed ID: 9285815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional coordination of microtubule-based and actin-based motility in melanophores.
    Rodionov VI; Hope AJ; Svitkina TM; Borisy GG
    Curr Biol; 1998 Jan; 8(3):165-8. PubMed ID: 9443917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microtubules govern stress granule mobility and dynamics.
    Nadezhdina ES; Lomakin AJ; Shpilman AA; Chudinova EM; Ivanov PA
    Biochim Biophys Acta; 2010 Mar; 1803(3):361-71. PubMed ID: 20036288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study.
    Rotsch C; Radmacher M
    Biophys J; 2000 Jan; 78(1):520-35. PubMed ID: 10620315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microtubules, but not actin microfilaments, regulate vacuole motility and morphology in hyphae of Pisolithus tinctorius.
    Hyde GJ; Davies D; Perasso L; Cole L; Ashford AE
    Cell Motil Cytoskeleton; 1999; 42(2):114-24. PubMed ID: 10215421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the origins of the universal dynamics of endogenous granules in mammalian cells.
    Vanapalli SA; Li Y; Mugele F; Duits MH
    Mol Cell Biomech; 2009 Dec; 6(4):191-201. PubMed ID: 19899443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pigment granule translocation in red ovarian chromatophores from the palaemonid shrimp Macrobrachium olfersi (Weigmann, 1836): functional roles for the cytoskeleton and its molecular motors.
    Milograna SR; Ribeiro MR; Baqui MM; McNamara JC
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Dec; 178():90-101. PubMed ID: 25182860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microtubule-targeted drugs inhibit VEGF receptor-2 expression by both transcriptional and post-transcriptional mechanisms.
    Meissner M; Pinter A; Michailidou D; Hrgovic I; Kaprolat N; Stein M; Holtmeier W; Kaufmann R; Gille J
    J Invest Dermatol; 2008 Aug; 128(8):2084-91. PubMed ID: 18323785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: maintenance of core components independent of actin filaments and microtubules.
    Allison DW; Chervin AS; Gelfand VI; Craig AM
    J Neurosci; 2000 Jun; 20(12):4545-54. PubMed ID: 10844024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of neurofilaments in growing axons requires microtubules but not actin filaments.
    Francis F; Roy S; Brady ST; Black MM
    J Neurosci Res; 2005 Feb; 79(4):442-50. PubMed ID: 15635594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.