These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 14568020)

  • 1. Stimulus-induced patterns of bioelectric activity in human neocortical tissue recorded by a voltage sensitive dye.
    Straub H; Kuhnt U; Höhling JM; Köhling R; Gorji A; Kuhlmann D; Tuxhorn I; Ebner A; Wolf P; Pannek HW; Lahl R; Speckmann EJ
    Neuroscience; 2003; 121(3):587-604. PubMed ID: 14568020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatio-temporal distribution of epileptiform activity in slices from human neocortex: recordings with voltage-sensitive dyes.
    Albowitz B; Kuhnt U; Köhling R; Lücke A; Straub H; Speckmann EJ; Tuxhorn I; Wolf P; Pannek H; Oppel F
    Epilepsy Res; 1998 Sep; 32(1-2):224-32. PubMed ID: 9761323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epileptiform activity in the guinea-pig neocortical slice spreads preferentially along supragranular layers--recordings with voltage-sensitive dyes.
    Albowitz B; Kuhnt U
    Eur J Neurosci; 1995 Jun; 7(6):1273-84. PubMed ID: 7582100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical recording of epileptiform voltage changes in the neocortical slice.
    Albowitz B; Kuhnt U; Ehrenreich L
    Exp Brain Res; 1990; 81(2):241-56. PubMed ID: 2397755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evoked changes of membrane potential in guinea pig sensory neocortical slices: an analysis with voltage-sensitive dyes and a fast optical recording method.
    Albowitz B; Kuhnt U
    Exp Brain Res; 1993; 93(2):213-25. PubMed ID: 8491262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partial suppression of GABAA-mediated inhibition induces spatially restricted epileptiform activity in guinea pig neocortical slices.
    Langenstroth M; Albowitz B; Kuhnt U
    Neurosci Lett; 1996 May; 210(2):103-6. PubMed ID: 8783283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional neocortical microcircuitry demonstrated with intrinsic signal optical imaging in vitro.
    Kohn A; Metz C; Quibrera M; Tommerdahl MA; Whitsel BL
    Neuroscience; 2000; 95(1):51-62. PubMed ID: 10619461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thalamic afferent activation of supragranular layers in auditory cortex in vitro: a voltage sensitive dye study.
    Broicher T; Bidmon HJ; Kamuf B; Coulon P; Gorji A; Pape HC; Speckmann EJ; Budde T
    Neuroscience; 2010 Jan; 165(2):371-85. PubMed ID: 19840834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contribution of intracortical connections to horizontal spread of activity in the neocortex as revealed by voltage sensitive dyes and a fast optical recording method.
    Albowitz B; Kuhnt U
    Eur J Neurosci; 1993 Oct; 5(10):1349-59. PubMed ID: 8275234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spread of epileptiform potentials in the neocortical slice: recordings with voltage-sensitive dyes.
    Albowitz B; Kuhnt U
    Brain Res; 1993 Dec; 631(2):329-33. PubMed ID: 8131062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epileptiform activity can be initiated in various neocortical layers: an optical imaging study.
    Tsau Y; Guan L; Wu JY
    J Neurophysiol; 1999 Oct; 82(4):1965-73. PubMed ID: 10515986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current-source-density profiles associated with sharp waves in human epileptic neocortical tissue.
    Köhling R; Qü M; Zilles K; Speckmann EJ
    Neuroscience; 1999; 94(4):1039-50. PubMed ID: 10625046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional spread of activity in synaptic networks of the human lateral amygdala.
    Graebenitz S; Cerina M; Lesting J; Kedo O; Gorji A; Pannek H; Hans V; Zilles K; Pape HC; Speckmann EJ
    Neuroscience; 2017 May; 349():330-340. PubMed ID: 28315444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical imaging in vitro provides evidence for the minicolumnar nature of cortical response.
    Kohn A; Pinheiro A; Tommerdahl MA; Whitsel BL
    Neuroreport; 1997 Nov; 8(16):3513-8. PubMed ID: 9427317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal properties of an evoked population activity in rat sensory cortical slices.
    Wu JY; Guan L; Bai L; Yang Q
    J Neurophysiol; 2001 Nov; 86(5):2461-74. PubMed ID: 11698535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spread of epileptiform activity in the immature rat neocortex studied with voltage-sensitive dyes and laser scanning microscopy.
    Sutor B; Hablitz JJ; Rucker F; ten Bruggencate G
    J Neurophysiol; 1994 Oct; 72(4):1756-68. PubMed ID: 7823100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage-sensitive dye imaging of neocortical spatiotemporal dynamics to afferent activation frequency.
    Contreras D; Llinas R
    J Neurosci; 2001 Dec; 21(23):9403-13. PubMed ID: 11717373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Components of field potentials evoked by white matter stimulation in isolated slices of primary visual cortex: spatial distributions and synaptic order.
    Langdon RB; Sur M
    J Neurophysiol; 1990 Nov; 64(5):1484-501. PubMed ID: 1980927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local synaptic circuits and epileptiform activity in slices of neocortex from children with intractable epilepsy.
    Tasker JG; Peacock WJ; Dudek FE
    J Neurophysiol; 1992 Mar; 67(3):496-507. PubMed ID: 1374457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition.
    Chagnac-Amitai Y; Connors BW
    J Neurophysiol; 1989 Apr; 61(4):747-58. PubMed ID: 2542471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.