BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 14568397)

  • 1. Preferential flow path development and its influence on long-term PRB performance: column study.
    Kamolpornwijit W; Liang L; West OR; Moline GR; Sullivan AB
    J Contam Hydrol; 2003 Nov; 66(3-4):161-78. PubMed ID: 14568397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of hydrogeochemical processes on zero-valent iron reactive barrier performance: a field investigation.
    Liang L; Moline GR; Kamolpornwijit W; West OR
    J Contam Hydrol; 2005 Aug; 78(4):291-312. PubMed ID: 16051393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogeochemical and biological processes affecting the long-term performance of an iron-based permeable reactive barrier.
    Zolla V; Freyria FS; Sethi R; Di Molfetta A
    J Environ Qual; 2009; 38(3):897-908. PubMed ID: 19329678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater.
    Phillips DH; Van Nooten T; Bastiaens L; Russell MI; Dickson K; Plant S; Ahad JM; Newton T; Elliot T; Kalin RM
    Environ Sci Technol; 2010 May; 44(10):3861-9. PubMed ID: 20420442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of hydrogeochemical processes on zero-valent iron reactive barrier performance: a field investigation.
    Liang L; Moline GR; Kamolpornwijit W; West OR
    J Contam Hydrol; 2005 Nov; 80(1-2):71-91. PubMed ID: 16126304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of gas production and entrapment in granular iron medium.
    Kamolpornwijit W; Liang L
    J Contam Hydrol; 2006 Jan; 82(3-4):338-56. PubMed ID: 16337024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracer method to determine residence time in a permeable reactive barrier.
    Bartlett TR; Morrison SJ
    Ground Water; 2009; 47(4):598-604. PubMed ID: 19245377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of mineral fouling on hydraulic behavior of permeable reactive barriers.
    Lin L; Benson CH; Lawson EM
    Ground Water; 2005; 43(4):582-96. PubMed ID: 16029183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term geochemical evolution of the near field repository: insights from reactive transport modelling and experimental evidences.
    Arcos D; Grandia F; Domènech C; Fernández AM; Villar MV; Muurinen A; Carlsson T; Sellin P; Hernán P
    J Contam Hydrol; 2008 Dec; 102(3-4):196-209. PubMed ID: 18992963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling porosity reductions caused by mineral fouling in continuous-wall permeable reactive barriers.
    Li L; Benson CH; Lawson EM
    J Contam Hydrol; 2006 Feb; 83(1-2):89-121. PubMed ID: 16386821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance evaluation of granular iron for removing hexavalent chromium under different geochemical conditions.
    Jeen SW; Blowes DW; Gillham RW
    J Contam Hydrol; 2008 Jan; 95(1-2):76-91. PubMed ID: 17913283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 1. Hydrogeochemical studies.
    Wilkin RT; Acree SD; Ross RR; Beak DG; Lee TR
    J Contam Hydrol; 2009 Apr; 106(1-2):1-14. PubMed ID: 19167133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during biostimulation experiments at Rifle, Colorado.
    Li L; Steefel CI; Kowalsky MB; Englert A; Hubbard SS
    J Contam Hydrol; 2010 Mar; 112(1-4):45-63. PubMed ID: 20036028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting longevity of iron permeable reactive barriers using multiple iron deactivation models.
    Carniato L; Schoups G; Seuntjens P; Van Nooten T; Simons Q; Bastiaens L
    J Contam Hydrol; 2012 Nov; 142-143():93-108. PubMed ID: 23174212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictions of long-term performance of granular iron permeable reactive barriers: field-scale evaluation.
    Jeen SW; Gillham RW; Przepiora A
    J Contam Hydrol; 2011 Apr; 123(1-2):50-64. PubMed ID: 21237528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of five strategies to limit the impact of fouling in permeable reactive barriers.
    Li L; Benson CH
    J Hazard Mater; 2010 Sep; 181(1-3):170-80. PubMed ID: 20510511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of site conditions for disposal of low- and intermediate-level radioactive wastes: a case study in southern China.
    Yi S; Ma H; Zheng C; Zhu X; Wang H; Li X; Hu X; Qin J
    Sci Total Environ; 2012 Jan; 414():624-31. PubMed ID: 22119030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical versus chemical effects on bacterial and bromide transport as determined from on site sediment column pulse experiments.
    Hall JA; Mailloux BJ; Onstott TC; Scheibe TD; Fuller ME; Dong H; DeFlaun MF
    J Contam Hydrol; 2005 Feb; 76(3-4):295-314. PubMed ID: 15683885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of pore clogging characteristics in potential permeable reactive barrier (PRB) substrates using image analysis.
    Wantanaphong J; Mooney SJ; Bailey EH
    J Contam Hydrol; 2006 Aug; 86(3-4):299-320. PubMed ID: 16725225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with chlorinated aliphatic hydrocarbons (CAHs).
    Muchitsch N; Van Nooten T; Bastiaens L; Kjeldsen P
    J Contam Hydrol; 2011 Nov; 126(3-4):258-70. PubMed ID: 22115091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.