These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 14568413)

  • 21. Hildebrand solubility parameter to predict drug release from hydroxypropyl methylcellulose gels.
    Bustamante P; Navarro-Lupión J; Peña MA; Escalera B
    Int J Pharm; 2011 Jul; 414(1-2):125-30. PubMed ID: 21620938
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamics of dissolution and diffusion-controlled drug release systems.
    Simon L; Bolisetty P; Erazo MN
    Curr Drug Deliv; 2011 Mar; 8(2):144-51. PubMed ID: 21235474
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mathematical modelling and controlled drug delivery: matrix systems.
    Grassi M; Grassi G
    Curr Drug Deliv; 2005 Jan; 2(1):97-116. PubMed ID: 16305412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Push-Pull Controlled Drug Release Systems: Effect of Molecular Weight of Polyethylene Oxide on Drug Release.
    Nakajima T; Takeuchi I; Ohshima H; Terada H; Makino K
    J Pharm Sci; 2018 Jul; 107(7):1896-1902. PubMed ID: 29548974
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mathematical modeling of drug dissolution.
    Siepmann J; Siepmann F
    Int J Pharm; 2013 Aug; 453(1):12-24. PubMed ID: 23618956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integration of dissolution into physiologically-based pharmacokinetic models III: PK-Sim®.
    Willmann S; Thelen K; Lippert J
    J Pharm Pharmacol; 2012 Jul; 64(7):997-1007. PubMed ID: 22686345
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A multi-scale stochastic drug release model for polymer-coated targeted drug delivery systems.
    Haddish-Berhane N; Nyquist C; Haghighi K; Corvalan C; Keshavarzian A; Campanella O; Rickus J; Farhadi A
    J Control Release; 2006 Jan; 110(2):314-322. PubMed ID: 16288814
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Osmotic flow through asymmetric membrane: a means for controlled delivery of drugs with varying solubility.
    Philip AK; Pathak K
    AAPS PharmSciTech; 2006 Jul; 7(3):56. PubMed ID: 17025237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A mechanism on the drug release into a perfect sink from a coated planar matrix with a super-saturation loading in the core.
    Tongwen X; Binglin H
    Int J Pharm; 2000 Mar; 197(1-2):23-34. PubMed ID: 10704790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New comprehensive mathematical model for HPMC-MCC based matrices to design oral controlled release systems.
    Saeidipour F; Mansourpour Z; Mortazavian E; Rafiee-Tehrani N; Rafiee-Tehrani M
    Eur J Pharm Biopharm; 2017 Dec; 121():61-72. PubMed ID: 28951063
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility.
    Tran PH; Tran TT; Lee KH; Kim DJ; Lee BJ
    Expert Opin Drug Deliv; 2010 May; 7(5):647-61. PubMed ID: 20205605
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cyclodextrin-Based Formulations: A Non-Invasive Platform for Targeted Drug Delivery.
    Muankaew C; Loftsson T
    Basic Clin Pharmacol Toxicol; 2018 Jan; 122(1):46-55. PubMed ID: 29024354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of the Dissolution Profile of Gliclazide Modified-Release Tablets Using Different Apparatuses and Dissolution Conditions.
    Skripnik KKS; Riekes MK; Pezzini BR; Cardoso SG; Stulzer HK
    AAPS PharmSciTech; 2017 Jul; 18(5):1785-1794. PubMed ID: 27800567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assemblage of drug release modules: effect of module shape and position in the assembled systems on floating behavior and release rate.
    Hascicek C; Rossi A; Colombo P; Massimo G; Strusi OL; Colombo G
    Eur J Pharm Biopharm; 2011 Jan; 77(1):116-21. PubMed ID: 21087663
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graft copolymers of ethyl methacrylate on waxy maize starch derivatives as novel excipients for matrix tablets: drug release and fronts movement kinetics.
    Marinich JA; Ferrero C; Jiménez-Castellanos MR
    Eur J Pharm Biopharm; 2012 Apr; 80(3):674-81. PubMed ID: 22210473
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro digestion kinetics of excipients for lipid-based drug delivery and introduction of a relative lipolysis half life.
    Arnold YE; Imanidis G; Kuentz M
    Drug Dev Ind Pharm; 2012 Oct; 38(10):1262-9. PubMed ID: 22206451
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of the drug-excipient ratio in matrix-type-controlled release systems: computer simulation study.
    Villalobos R; Ganem A; Cordero S; Vidales AM; Domínguez A
    Drug Dev Ind Pharm; 2005 Jul; 31(6):535-43. PubMed ID: 16109626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immediate drug release from solid oral dosage forms.
    Schreiner T; Schaefer UF; Loth H
    J Pharm Sci; 2005 Jan; 94(1):120-33. PubMed ID: 15761936
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissolution of ionizable drugs in buffered and unbuffered solutions.
    Ozturk SS; Palsson BO; Dressman JB
    Pharm Res; 1988 May; 5(5):272-82. PubMed ID: 3244637
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mathematical modeling of drug delivery from torus-shaped single-layer devices.
    Helbling IM; Luna JA; Cabrera MI
    J Control Release; 2011 Feb; 149(3):258-63. PubMed ID: 20971140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.