These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 14568433)
1. The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations. Grad S; Kupcsik L; Gorna K; Gogolewski S; Alini M Biomaterials; 2003 Dec; 24(28):5163-71. PubMed ID: 14568433 [TBL] [Abstract][Full Text] [Related]
2. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Woodfield TB; Van Blitterswijk CA; De Wijn J; Sims TJ; Hollander AP; Riesle J Tissue Eng; 2005; 11(9-10):1297-311. PubMed ID: 16259586 [TBL] [Abstract][Full Text] [Related]
3. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905 [TBL] [Abstract][Full Text] [Related]
4. The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. Malda J; Woodfield TB; van der Vloodt F; Wilson C; Martens DE; Tramper J; van Blitterswijk CA; Riesle J Biomaterials; 2005 Jan; 26(1):63-72. PubMed ID: 15193881 [TBL] [Abstract][Full Text] [Related]
5. Fibrin-polyurethane composites for articular cartilage tissue engineering: a preliminary analysis. Lee CR; Grad S; Gorna K; Gogolewski S; Goessl A; Alini M Tissue Eng; 2005; 11(9-10):1562-73. PubMed ID: 16259610 [TBL] [Abstract][Full Text] [Related]
6. A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes. Oliveira JT; Crawford A; Mundy JM; Moreira AR; Gomes ME; Hatton PV; Reis RL J Mater Sci Mater Med; 2007 Feb; 18(2):295-302. PubMed ID: 17323161 [TBL] [Abstract][Full Text] [Related]
7. Tissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro study. Wang X; Grogan SP; Rieser F; Winkelmann V; Maquet V; Berge ML; Mainil-Varlet P Biomaterials; 2004 Aug; 25(17):3681-8. PubMed ID: 15020143 [TBL] [Abstract][Full Text] [Related]
8. A new biodegradable polyester elastomer for cartilage tissue engineering. Kang Y; Yang J; Khan S; Anissian L; Ameer GA J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714 [TBL] [Abstract][Full Text] [Related]
9. Poly(lactide-co-glycolide) microspheres as a moldable scaffold for cartilage tissue engineering. Mercier NR; Costantino HR; Tracy MA; Bonassar LJ Biomaterials; 2005 May; 26(14):1945-52. PubMed ID: 15576168 [TBL] [Abstract][Full Text] [Related]
10. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Yoo HS; Lee EA; Yoon JJ; Park TG Biomaterials; 2005 May; 26(14):1925-33. PubMed ID: 15576166 [TBL] [Abstract][Full Text] [Related]
11. Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation. Alves da Silva ML; Crawford A; Mundy JM; Correlo VM; Sol P; Bhattacharya M; Hatton PV; Reis RL; Neves NM Acta Biomater; 2010 Mar; 6(3):1149-57. PubMed ID: 19788942 [TBL] [Abstract][Full Text] [Related]
12. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation. Jonnalagadda JB; Rivero IV; Dertien JS J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317 [TBL] [Abstract][Full Text] [Related]
13. Expansion of human nasal chondrocytes on macroporous microcarriers enhances redifferentiation. Malda J; Kreijveld E; Temenoff JS; van Blitterswijk CA; Riesle J Biomaterials; 2003 Dec; 24(28):5153-61. PubMed ID: 14568432 [TBL] [Abstract][Full Text] [Related]
14. Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications. Moroni L; Hendriks JA; Schotel R; de Wijn JR; van Blitterswijk CA Tissue Eng; 2007 Feb; 13(2):361-71. PubMed ID: 17504063 [TBL] [Abstract][Full Text] [Related]
15. [Chondrogenesis of passaged chondrocytes induced by different dynamic loads in bioreactor]. Wang N; Chen J; Zhang G; Chai W Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Jul; 27(7):786-92. PubMed ID: 24063164 [TBL] [Abstract][Full Text] [Related]
16. Cellular utilization determines viability and matrix distribution profiles in chondrocyte-seeded alginate constructs. Heywood HK; Sembi PK; Lee DA; Bader DL Tissue Eng; 2004; 10(9-10):1467-79. PubMed ID: 15588406 [TBL] [Abstract][Full Text] [Related]
17. Culture of bovine articular chondrocytes in funnel-like collagen-PLGA hybrid sponges. Lu H; Ko YG; Kawazoe N; Chen G Biomed Mater; 2011 Aug; 6(4):045011. PubMed ID: 21747151 [TBL] [Abstract][Full Text] [Related]
18. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering. Eglin D; Grad S; Gogolewski S; Alini M J Biomed Mater Res A; 2010 Jan; 92(1):393-408. PubMed ID: 19191318 [TBL] [Abstract][Full Text] [Related]
19. Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering. El-Ayoubi R; DeGrandpré C; DiRaddo R; Yousefi AM; Lavigne P J Biomater Appl; 2011 Jan; 25(5):429-44. PubMed ID: 20042429 [TBL] [Abstract][Full Text] [Related]
20. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Svensson A; Nicklasson E; Harrah T; Panilaitis B; Kaplan DL; Brittberg M; Gatenholm P Biomaterials; 2005 Feb; 26(4):419-31. PubMed ID: 15275816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]