These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
846 related articles for article (PubMed ID: 14568475)
1. General multilevel linear modeling for group analysis in FMRI. Beckmann CF; Jenkinson M; Smith SM Neuroimage; 2003 Oct; 20(2):1052-63. PubMed ID: 14568475 [TBL] [Abstract][Full Text] [Related]
2. Tensorial extensions of independent component analysis for multisubject FMRI analysis. Beckmann CF; Smith SM Neuroimage; 2005 Mar; 25(1):294-311. PubMed ID: 15734364 [TBL] [Abstract][Full Text] [Related]
3. Bayesian second-level analysis of functional magnetic resonance images. Neumann J; Lohmann G Neuroimage; 2003 Oct; 20(2):1346-55. PubMed ID: 14568503 [TBL] [Abstract][Full Text] [Related]
4. Independent vector analysis (IVA): multivariate approach for fMRI group study. Lee JH; Lee TW; Jolesz FA; Yoo SS Neuroimage; 2008 Mar; 40(1):86-109. PubMed ID: 18165105 [TBL] [Abstract][Full Text] [Related]
5. Using nonlinear models in fMRI data analysis: model selection and activation detection. Deneux T; Faugeras O Neuroimage; 2006 Oct; 32(4):1669-89. PubMed ID: 16844388 [TBL] [Abstract][Full Text] [Related]
6. Mixed-effects and fMRI studies. Friston KJ; Stephan KE; Lund TE; Morcom A; Kiebel S Neuroimage; 2005 Jan; 24(1):244-52. PubMed ID: 15588616 [TBL] [Abstract][Full Text] [Related]
7. Multilevel linear modelling for FMRI group analysis using Bayesian inference. Woolrich MW; Behrens TE; Beckmann CF; Jenkinson M; Smith SM Neuroimage; 2004 Apr; 21(4):1732-47. PubMed ID: 15050594 [TBL] [Abstract][Full Text] [Related]
8. A general statistical analysis for fMRI data. Worsley KJ; Liao CH; Aston J; Petre V; Duncan GH; Morales F; Evans AC Neuroimage; 2002 Jan; 15(1):1-15. PubMed ID: 11771969 [TBL] [Abstract][Full Text] [Related]
9. A statistical framework for optimal design matrix generation with application to fMRI. Pendse GV; Baumgartner R; Schwarz AJ; Coimbra A; Borsook D; Becerra L IEEE Trans Med Imaging; 2010 Sep; 29(9):1573-611. PubMed ID: 20304726 [TBL] [Abstract][Full Text] [Related]
10. Optimal spatial regularisation of autocorrelation estimates in fMRI analysis. Gautama T; Van Hulle MM Neuroimage; 2004 Nov; 23(3):1203-16. PubMed ID: 15528120 [TBL] [Abstract][Full Text] [Related]
11. A comparative study of one-level and two-level semiparametric estimation of hemodynamic response function for fMRI data. Zhang CM; Jiang Y; Yu T Stat Med; 2007 Sep; 26(21):3845-61. PubMed ID: 17551932 [TBL] [Abstract][Full Text] [Related]
13. An evaluation of thresholding techniques in fMRI analysis. Logan BR; Rowe DB Neuroimage; 2004 May; 22(1):95-108. PubMed ID: 15110000 [TBL] [Abstract][Full Text] [Related]
14. Parameter estimation in the magnitude-only and complex-valued fMRI data models. Rowe DB Neuroimage; 2005 May; 25(4):1124-32. PubMed ID: 15850730 [TBL] [Abstract][Full Text] [Related]
15. Spatial smoothing of autocorrelations to control the degrees of freedom in fMRI analysis. Worsley KJ Neuroimage; 2005 Jun; 26(2):635-41. PubMed ID: 15907321 [TBL] [Abstract][Full Text] [Related]
16. Detecting fMRI activation allowing for unknown latency of the hemodynamic response. Worsley KJ; Taylor JE Neuroimage; 2006 Jan; 29(2):649-54. PubMed ID: 16125978 [TBL] [Abstract][Full Text] [Related]
17. A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI. Makni S; Idier J; Vincent T; Thirion B; Dehaene-Lambertz G; Ciuciu P Neuroimage; 2008 Jul; 41(3):941-69. PubMed ID: 18439839 [TBL] [Abstract][Full Text] [Related]