BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 14568534)

  • 1. 2.0A resolution crystal structures of the ternary complexes of human phenylalanine hydroxylase catalytic domain with tetrahydrobiopterin and 3-(2-thienyl)-L-alanine or L-norleucine: substrate specificity and molecular motions related to substrate binding.
    Andersen OA; Stokka AJ; Flatmark T; Hough E
    J Mol Biol; 2003 Oct; 333(4):747-57. PubMed ID: 14568534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of the ternary complex of the catalytic domain of human phenylalanine hydroxylase with tetrahydrobiopterin and 3-(2-thienyl)-L-alanine, and its implications for the mechanism of catalysis and substrate activation.
    Andersen OA; Flatmark T; Hough E
    J Mol Biol; 2002 Jul; 320(5):1095-108. PubMed ID: 12126628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High resolution crystal structures of the catalytic domain of human phenylalanine hydroxylase in its catalytically active Fe(II) form and binary complex with tetrahydrobiopterin.
    Andersen OA; Flatmark T; Hough E
    J Mol Biol; 2001 Nov; 314(2):279-91. PubMed ID: 11718561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure and site-specific mutagenesis of pterin-bound human phenylalanine hydroxylase.
    Erlandsen H; Bjørgo E; Flatmark T; Stevens RC
    Biochemistry; 2000 Mar; 39(9):2208-17. PubMed ID: 10694386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing cofactor specificity in phenylalanine hydroxylase by molecular dynamics simulations.
    Teigen K; Martinez A
    J Biomol Struct Dyn; 2003 Jun; 20(6):733-40. PubMed ID: 12744702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the regulatory properties of the pterin cofactor and dopamine bound at the active site of human phenylalanine hydroxylase.
    Solstad T; Stokka AJ; Andersen OA; Flatmark T
    Eur J Biochem; 2003 Mar; 270(5):981-90. PubMed ID: 12603331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeled ligand-protein complexes elucidate the origin of substrate specificity and provide insight into catalytic mechanisms of phenylalanine hydroxylase and tyrosine hydroxylase.
    Maass A; Scholz J; Moser A
    Eur J Biochem; 2003 Mar; 270(6):1065-75. PubMed ID: 12631267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetrahydrobiopterin binding to aromatic amino acid hydroxylases. Ligand recognition and specificity.
    Teigen K; Dao KK; McKinney JA; Gorren AC; Mayer B; Frøystein NA; Haavik J; Martínez A
    J Med Chem; 2004 Nov; 47(24):5962-71. PubMed ID: 15537351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of full-length human phenylalanine hydroxylase in complex with tetrahydrobiopterin.
    Flydal MI; Alcorlo-Pagés M; Johannessen FG; Martínez-Caballero S; Skjærven L; Fernandez-Leiro R; Martinez A; Hermoso JA
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11229-11234. PubMed ID: 31118288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the role of crystallographically defined/predicted hinge-bending regions in the substrate-induced global conformational transition and catalytic activation of human phenylalanine hydroxylase by single-site mutagenesis.
    Stokka AJ; Carvalho RN; Barroso JF; Flatmark T
    J Biol Chem; 2004 Jun; 279(25):26571-80. PubMed ID: 15060071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate-induced conformational transition in human phenylalanine hydroxylase as studied by surface plasmon resonance analyses: the effect of terminal deletions, substrate analogues and phosphorylation.
    Stokka AJ; Flatmark T
    Biochem J; 2003 Feb; 369(Pt 3):509-18. PubMed ID: 12379147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural comparison of bacterial and human iron-dependent phenylalanine hydroxylases: similar fold, different stability and reaction rates.
    Erlandsen H; Kim JY; Patch MG; Han A; Volner A; Abu-Omar MM; Stevens RC
    J Mol Biol; 2002 Jul; 320(3):645-61. PubMed ID: 12096915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of surface plasmon resonance for real-time measurements of the global conformational transition in human phenylalanine hydroxylase in response to substrate binding and catalytic activation.
    Flatmark T; Stokka AJ; Berge SV
    Anal Biochem; 2001 Jul; 294(2):95-101. PubMed ID: 11444803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformation of the substrate and pterin cofactor bound to human tryptophan hydroxylase. Important role of Phe313 in substrate specificity.
    McKinney J; Teigen K; Frøystein NA; Salaün C; Knappskog PM; Haavik J; Martínez A
    Biochemistry; 2001 Dec; 40(51):15591-601. PubMed ID: 11747434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of substrate, dihydrobiopterin, and dopamine on the EPR spectroscopic properties and the midpoint potential of the catalytic iron in recombinant human phenylalanine hydroxylase.
    Hagedoorn PL; Schmidt PP; Andersson KK; Hagen WR; Flatmark T; Martínez A
    J Biol Chem; 2001 Jun; 276(25):22850-6. PubMed ID: 11301319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of tryptophan hydroxylase with bound amino acid substrate.
    Windahl MS; Petersen CR; Christensen HE; Harris P
    Biochemistry; 2008 Nov; 47(46):12087-94. PubMed ID: 18937498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of kinetic and regulatory properties of the tetrameric and dimeric forms of wild-type and Thr427-->Pro mutant human phenylalanine hydroxylase: contribution of the flexible hinge region Asp425-Gln429 to the tetramerization and cooperative substrate binding.
    Bjørgo E; de Carvalho RM; Flatmark T
    Eur J Biochem; 2001 Feb; 268(4):997-1005. PubMed ID: 11179966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallographic analysis of the human phenylalanine hydroxylase catalytic domain with bound catechol inhibitors at 2.0 A resolution.
    Erlandsen H; Flatmark T; Stevens RC; Hough E
    Biochemistry; 1998 Nov; 37(45):15638-46. PubMed ID: 9843368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structural basis of the recognition of phenylalanine and pterin cofactors by phenylalanine hydroxylase: implications for the catalytic mechanism.
    Teigen K; Frøystein NA; Martínez A
    J Mol Biol; 1999 Dec; 294(3):807-23. PubMed ID: 10610798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of Chlorobium tepidum sepiapterin reductase complex reveals the novel substrate binding mode for stereospecific production of L-threo-tetrahydrobiopterin.
    Supangat S; Seo KH; Choi YK; Park YS; Son D; Han CD; Lee KH
    J Biol Chem; 2006 Jan; 281(4):2249-56. PubMed ID: 16308317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.