BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 14569031)

  • 1. Active sites of thioredoxin reductases: why selenoproteins?
    Gromer S; Johansson L; Bauer H; Arscott LD; Rauch S; Ballou DP; Williams CH; Schirmer RH; Arnér ES
    Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12618-23. PubMed ID: 14569031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and conformer analysis of a novel redox-active motif, Pro-Ala-Ser-Cys-Cys-Ser, in Drosophila thioredoxin reductase by semiempirical molecular orbital calculation.
    Kuwahara M; Tamura T; Kawamura K; Inagaki K
    Biosci Biotechnol Biochem; 2011; 75(3):516-21. PubMed ID: 21389620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of an active site mutant of the selenoprotein thioredoxin reductase: the Ser-Cys-Cys-Ser motif of the insect orthologue is not sufficient to replace the Cys-Sec dyad in the mammalian enzyme.
    Johansson L; Arscott LD; Ballou DP; Williams CH; Arnér ES
    Free Radic Biol Med; 2006 Aug; 41(4):649-56. PubMed ID: 16863998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and biochemical studies reveal differences in the catalytic mechanisms of mammalian and Drosophila melanogaster thioredoxin reductases.
    Eckenroth BE; Rould MA; Hondal RJ; Everse SJ
    Biochemistry; 2007 Apr; 46(16):4694-705. PubMed ID: 17385893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional structure of a mammalian thioredoxin reductase: implications for mechanism and evolution of a selenocysteine-dependent enzyme.
    Sandalova T; Zhong L; Lindqvist Y; Holmgren A; Schneider G
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9533-8. PubMed ID: 11481439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations.
    Zhong L; Holmgren A
    J Biol Chem; 2000 Jun; 275(24):18121-8. PubMed ID: 10849437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensating for the absence of selenocysteine in high-molecular weight thioredoxin reductases: the electrophilic activation hypothesis.
    Lothrop AP; Snider GW; Flemer S; Ruggles EL; Davidson RS; Lamb AL; Hondal RJ
    Biochemistry; 2014 Feb; 53(4):664-74. PubMed ID: 24490974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes.
    Arnér ES; Sarioglu H; Lottspeich F; Holmgren A; Böck A
    J Mol Biol; 1999 Oct; 292(5):1003-16. PubMed ID: 10512699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. No selenium required: reactions catalyzed by mammalian thioredoxin reductase that are independent of a selenocysteine residue.
    Lothrop AP; Ruggles EL; Hondal RJ
    Biochemistry; 2009 Jul; 48(26):6213-23. PubMed ID: 19366212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why is mammalian thioredoxin reductase 1 so dependent upon the use of selenium?
    Lothrop AP; Snider GW; Ruggles EL; Hondal RJ
    Biochemistry; 2014 Jan; 53(3):554-65. PubMed ID: 24393022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thioredoxin reductase.
    Mustacich D; Powis G
    Biochem J; 2000 Feb; 346 Pt 1(Pt 1):1-8. PubMed ID: 10657232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and mechanism of mammalian thioredoxin reductase: the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence.
    Zhong L; Arnér ES; Holmgren A
    Proc Natl Acad Sci U S A; 2000 May; 97(11):5854-9. PubMed ID: 10801974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiol cofactors for selenoenzymes and their synthetic mimics.
    Sarma BK; Mugesh G
    Org Biomol Chem; 2008 Mar; 6(6):965-74. PubMed ID: 18327317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mechanistic investigation of the C-terminal redox motif of thioredoxin reductase from Plasmodium falciparum.
    Snider GW; Dustin CM; Ruggles EL; Hondal RJ
    Biochemistry; 2014 Jan; 53(3):601-9. PubMed ID: 24400600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can Selenoenzymes Resist Electrophilic Modification? Evidence from Thioredoxin Reductase and a Mutant Containing α-Methylselenocysteine.
    Ste Marie EJ; Wehrle RJ; Haupt DJ; Wood NB; van der Vliet A; Previs MJ; Masterson DS; Hondal RJ
    Biochemistry; 2020 Sep; 59(36):3300-3315. PubMed ID: 32845139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the C-terminal redox center of high-Mr thioredoxin reductase by protein engineering and semisynthesis.
    Eckenroth BE; Lacey BM; Lothrop AP; Harris KM; Hondal RJ
    Biochemistry; 2007 Aug; 46(33):9472-83. PubMed ID: 17661444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selenium in thioredoxin reductase: a mechanistic perspective.
    Lacey BM; Eckenroth BE; Flemer S; Hondal RJ
    Biochemistry; 2008 Dec; 47(48):12810-21. PubMed ID: 18986163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity.
    Lee SR; Bar-Noy S; Kwon J; Levine RL; Stadtman TC; Rhee SG
    Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2521-6. PubMed ID: 10688911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The selenium-independent inherent pro-oxidant NADPH oxidase activity of mammalian thioredoxin reductase and its selenium-dependent direct peroxidase activities.
    Cheng Q; Antholine WE; Myers JM; Kalyanaraman B; Arnér ES; Myers CR
    J Biol Chem; 2010 Jul; 285(28):21708-23. PubMed ID: 20457604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Function of Glu-469' in the acid-base catalysis of thioredoxin reductase from Drosophila melanogaster.
    Huang HH; Arscott LD; Ballou DP; Williams CH
    Biochemistry; 2008 Dec; 47(48):12769-76. PubMed ID: 18991392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.