These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 14569284)
1. The infection process of Colletotrichum graminicola and relative aggressiveness on four turfgrass species. Khan A; Hsiang T Can J Microbiol; 2003 Jul; 49(7):433-42. PubMed ID: 14569284 [TBL] [Abstract][Full Text] [Related]
2. The role of a fadA ortholog in the growth and development of Colletotrichum graminicola in vitro and in planta. Venard C; Kulshrestha S; Sweigard J; Nuckles E; Vaillancourt L Fungal Genet Biol; 2008 Jun; 45(6):973-83. PubMed ID: 18448365 [TBL] [Abstract][Full Text] [Related]
3. Colletotrichum: A model genus for studies on pathology and fungal-plant interactions. Perfect SE; Hughes HB; O'Connell RJ; Green JR Fungal Genet Biol; 1999; 27(2-3):186-98. PubMed ID: 10441444 [TBL] [Abstract][Full Text] [Related]
5. Comparison of early development of three grasses: Lolium perenne, Agrostis stolonifera and Poa pratensis. Fustec J; Guilleux J; Le Corff J; Maitre JP Ann Bot; 2005 Aug; 96(2):269-78. PubMed ID: 15932884 [TBL] [Abstract][Full Text] [Related]
6. Infection biology and defence responses in sorghum against Colletotrichum sublineolum. Basavaraju P; Shetty NP; Shetty HS; de Neergaard E; Jørgensen HJ J Appl Microbiol; 2009 Aug; 107(2):404-15. PubMed ID: 19302494 [TBL] [Abstract][Full Text] [Related]
7. Infection structure-specific reductive iron assimilation is required for cell wall integrity and full virulence of the maize pathogen Colletotrichum graminicola. Albarouki E; Deising HB Mol Plant Microbe Interact; 2013 Jun; 26(6):695-708. PubMed ID: 23639025 [TBL] [Abstract][Full Text] [Related]
8. Colletotrichum gloeosporioides can overgrow Colletotrichum kahawae on green coffee berries first inoculated with C. kahawae. Chen Z; Liang J; Rodrigues CJ Biotechnol Lett; 2005 May; 27(10):679-82. PubMed ID: 16049733 [TBL] [Abstract][Full Text] [Related]
9. A novel Arabidopsis-Colletotrichum pathosystem for the molecular dissection of plant-fungal interactions. O'Connell R; Herbert C; Sreenivasaprasad S; Khatib M; Esquerré-Tugayé MT; Dumas B Mol Plant Microbe Interact; 2004 Mar; 17(3):272-82. PubMed ID: 15000394 [TBL] [Abstract][Full Text] [Related]
10. A gene involved in modifying transfer RNA is required for fungal pathogenicity and stress tolerance of Colletotrichum lagenarium. Takano Y; Takayanagi N; Hori H; Ikeuchi Y; Suzuki T; Kimura A; Okuno T Mol Microbiol; 2006 Apr; 60(1):81-92. PubMed ID: 16556222 [TBL] [Abstract][Full Text] [Related]
11. The Colletotrichum lagenariu Ste12-like gene CST1 is essential for appressorium penetration. Tsuji G; Fujii S; Tsuge S; Shiraishi T; Kubo Y Mol Plant Microbe Interact; 2003 Apr; 16(4):315-25. PubMed ID: 12744460 [TBL] [Abstract][Full Text] [Related]
12. The tetraspanin gene ClPLS1 is essential for appressorium-mediated penetration of the fungal pathogen Colletotrichum lindemuthianum. Veneault-Fourrey C; Parisot D; Gourgues M; Laugé R; Lebrun MH; Langin T Fungal Genet Biol; 2005 Apr; 42(4):306-18. PubMed ID: 15749050 [TBL] [Abstract][Full Text] [Related]
13. Visualization of localized pathogen-Induced pH modulation in almond tissues infected by Colletotrichum acutatum using confocal scanning laser microscopy. Diéguez-Uribeondo J; Förster H; Adaskaveg JE Phytopathology; 2008 Nov; 98(11):1171-8. PubMed ID: 18943405 [TBL] [Abstract][Full Text] [Related]
14. A Kelch repeat protein, Cokel1p, associates with microtubules and is involved in appressorium development in Colletotrichum orbiculare. Sakaguchi A; Miyaji T; Tsuji G; Kubo Y Mol Plant Microbe Interact; 2010 Jan; 23(1):103-11. PubMed ID: 19958143 [TBL] [Abstract][Full Text] [Related]
15. cAMP regulation of "pathogenic" and "saprophytic" fungal spore germination. Barhoom S; Sharon A Fungal Genet Biol; 2004 Mar; 41(3):317-26. PubMed ID: 14761792 [TBL] [Abstract][Full Text] [Related]
16. Correspondence between symptom development of Colletotrichum graminicola and fungal biomass, quantified by a newly developed qPCR assay, depends on the maize variety. Weihmann F; Eisermann I; Becher R; Krijger JJ; Hübner K; Deising HB; Wirsel SG BMC Microbiol; 2016 May; 16():94. PubMed ID: 27215339 [TBL] [Abstract][Full Text] [Related]
17. A highly conserved metalloprotease effector enhances virulence in the maize anthracnose fungus Colletotrichum graminicola. Sanz-Martín JM; Pacheco-Arjona JR; Bello-Rico V; Vargas WA; Monod M; Díaz-Mínguez JM; Thon MR; Sukno SA Mol Plant Pathol; 2016 Sep; 17(7):1048-62. PubMed ID: 26619206 [TBL] [Abstract][Full Text] [Related]
18. Interactions of Neotyphodium gansuense, Achnatherum inebrians, and plant-pathogenic fungi. Li CJ; Gao JH; Nan ZB Mycol Res; 2007 Oct; 111(Pt 10):1220-7. PubMed ID: 17988846 [TBL] [Abstract][Full Text] [Related]
19. The application of laser microdissection to in planta gene expression profiling of the maize anthracnose stalk rot fungus Colletotrichum graminicola. Tang W; Coughlan S; Crane E; Beatty M; Duvick J Mol Plant Microbe Interact; 2006 Nov; 19(11):1240-50. PubMed ID: 17073306 [TBL] [Abstract][Full Text] [Related]
20. ABC protein CgABCF2 is required for asexual and sexual development, appressorial formation and plant infection in Colletotrichum gloeosporioides. Zhou Z; Wu J; Wang M; Zhang J Microb Pathog; 2017 Sep; 110():85-92. PubMed ID: 28645773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]