These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 14569290)
1. Effects of Gypsophila saponins on bacterial growth kinetics and on selection of subterranean clover rhizosphere bacteria. Fons F; Amellal N; Leyval C; Saint-Martin N; Henry M Can J Microbiol; 2003 Jun; 49(6):367-73. PubMed ID: 14569290 [TBL] [Abstract][Full Text] [Related]
2. Activities and survival of endophytic bacteria in white clover (Trifolium repens L.). Burch G; Sarathchandra U Can J Microbiol; 2006 Sep; 52(9):848-56. PubMed ID: 17110977 [TBL] [Abstract][Full Text] [Related]
3. Specific rhizosphere bacterial and fungal groups respond differently to elevated atmospheric CO(2). Drigo B; van Veen JA; Kowalchuk GA ISME J; 2009 Oct; 3(10):1204-17. PubMed ID: 19536195 [TBL] [Abstract][Full Text] [Related]
4. Effect of natamycin on the enumeration, genetic structure and composition of bacterial community isolated from soils and soybean rhizosphere. Mohamed MA; Ranjard L; Catroux C; Catroux G; Hartmann A J Microbiol Methods; 2005 Jan; 60(1):31-40. PubMed ID: 15567222 [TBL] [Abstract][Full Text] [Related]
5. Isolation and characterization of rhizosphere bacteria with potential for biological control of weeds in vineyards. Flores-Vargas RD; O'Hara GW J Appl Microbiol; 2006 May; 100(5):946-54. PubMed ID: 16629995 [TBL] [Abstract][Full Text] [Related]
6. High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Egamberdieva D; Kamilova F; Validov S; Gafurova L; Kucharova Z; Lugtenberg B Environ Microbiol; 2008 Jan; 10(1):1-9. PubMed ID: 18211262 [TBL] [Abstract][Full Text] [Related]
7. Rhizodeposition and the enhanced mineralization of 2,4-dichlorophenoxyacetic acid in soil from the Trifolium pratense rhizosphere. Shaw LJ; Burns RG Environ Microbiol; 2005 Feb; 7(2):191-202. PubMed ID: 15658986 [TBL] [Abstract][Full Text] [Related]
8. Interspecific control of non-symbiotic carbon partitioning in the rhizosphere of a grass-clover association: Bromus madritensis-Trifolium angustifolium. Warembourg FR; Roumet C; Lafont F J Exp Bot; 2004 Mar; 55(397):743-50. PubMed ID: 14754916 [TBL] [Abstract][Full Text] [Related]
9. Resilience of the rhizosphere Pseudomonas and ammonia-oxidizing bacterial populations during phytoextraction of heavy metal polluted soil with poplar. Frey B; Pesaro M; Rüdt A; Widmer F Environ Microbiol; 2008 Jun; 10(6):1433-49. PubMed ID: 18279346 [TBL] [Abstract][Full Text] [Related]
10. Decreased abundance and diversity of culturable Pseudomonas spp. populations with increasing copper exposure in the sugar beet rhizosphere. Brandt KK; Petersen A; Holm PE; Nybroe O FEMS Microbiol Ecol; 2006 May; 56(2):281-91. PubMed ID: 16629757 [TBL] [Abstract][Full Text] [Related]
11. Soil microbial community response to hexavalent chromium in planted and unplanted soil. Ipsilantis I; Coyne MS J Environ Qual; 2007; 36(3):638-45. PubMed ID: 17412900 [TBL] [Abstract][Full Text] [Related]
12. Isolation and characterization of bacteria associated with two sand dune plant species, Calystegia soldanella and Elymus mollis. Park MS; Jung SR; Lee MS; Kim KO; Do JO; Lee KH; Kim SB; Bae KS J Microbiol; 2005 Jun; 43(3):219-27. PubMed ID: 15995638 [TBL] [Abstract][Full Text] [Related]
13. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Chen YX; Wang YP; Lin Q; Luo YM Environ Int; 2005 Aug; 31(6):861-6. PubMed ID: 16005516 [TBL] [Abstract][Full Text] [Related]
14. [Colonization of plant rhizosphere by actinomycetes of different genera]. Merzaeva OV; Shirokikh IG Mikrobiologiia; 2006; 75(2):271-6. PubMed ID: 16758877 [TBL] [Abstract][Full Text] [Related]
15. Rhizosphere microbial community structure at different maize plant growth stages and root locations. Cavaglieri L; Orlando J; Etcheverry M Microbiol Res; 2009; 164(4):391-9. PubMed ID: 17524636 [TBL] [Abstract][Full Text] [Related]
16. Screening of rhizosphere and soil bacteria for transformability. Richter B; Smalla K Environ Biosafety Res; 2007; 6(1-2):91-9. PubMed ID: 17961483 [TBL] [Abstract][Full Text] [Related]
17. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Berg G; Eberl L; Hartmann A Environ Microbiol; 2005 Nov; 7(11):1673-85. PubMed ID: 16232283 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the phytoremediation potential of four plant species for dibenzofuran-contaminated soil. Wang Y; Oyaizu H J Hazard Mater; 2009 Sep; 168(2-3):760-4. PubMed ID: 19321258 [TBL] [Abstract][Full Text] [Related]
19. Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Vivas A; Biró B; Ruíz-Lozano JM; Barea JM; Azcón R Chemosphere; 2006 Mar; 62(9):1523-33. PubMed ID: 16098559 [TBL] [Abstract][Full Text] [Related]
20. Genetic diversity of culturable bacteria in oil-contaminated rhizosphere of Galega orientalis. Jussila MM; Jurgens G; Lindström K; Suominen L Environ Pollut; 2006 Jan; 139(2):244-57. PubMed ID: 16055251 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]