These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 14570244)

  • 1. Gain control from beyond the classical receptive field in primate primary visual cortex.
    Webb BS; Tinsley CJ; Barraclough NE; Parker A; Derrington AM
    Vis Neurosci; 2003; 20(3):221-30. PubMed ID: 14570244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons.
    Cavanaugh JR; Bair W; Movshon JA
    J Neurophysiol; 2002 Nov; 88(5):2547-56. PubMed ID: 12424293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of surround inhibition in cat area 17.
    Sengpiel F; Sen A; Blakemore C
    Exp Brain Res; 1997 Sep; 116(2):216-28. PubMed ID: 9348122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feedback from V1 and inhibition from beyond the classical receptive field modulates the responses of neurons in the primate lateral geniculate nucleus.
    Webb BS; Tinsley CJ; Barraclough NE; Easton A; Parker A; Derrington AM
    Vis Neurosci; 2002; 19(5):583-92. PubMed ID: 12507325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uniformity and diversity of response properties of neurons in the primary visual cortex: selectivity for orientation, direction of motion, and stimulus size from center to far periphery.
    Yu HH; Rosa MG
    Vis Neurosci; 2014 Jan; 31(1):85-98. PubMed ID: 24160942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons.
    Angelucci A; Bressloff PC
    Prog Brain Res; 2006; 154():93-120. PubMed ID: 17010705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nature of V1 neural responses to 2D moving patterns depends on receptive-field structure in the marmoset monkey.
    Tinsley CJ; Webb BS; Barraclough NE; Vincent CJ; Parker A; Derrington AM
    J Neurophysiol; 2003 Aug; 90(2):930-7. PubMed ID: 12711710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat.
    Naito T; Sadakane O; Okamoto M; Sato H
    Neuroscience; 2007 Nov; 149(4):962-75. PubMed ID: 17945429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct patterns of surround modulation in V1 and hMT.
    Er G; Pamir Z; Boyaci H
    Neuroimage; 2020 Oct; 220():117084. PubMed ID: 32629144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of surround motion on receptive-field gain and structure in area 17 of the cat.
    Palmer LA; Nafziger JS
    Vis Neurosci; 2002; 19(3):335-53. PubMed ID: 12392182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial and temporal frequency tuning in striate cortex: functional uniformity and specializations related to receptive field eccentricity.
    Yu HH; Verma R; Yang Y; Tibballs HA; Lui LL; Reser DH; Rosa MG
    Eur J Neurosci; 2010 Mar; 31(6):1043-62. PubMed ID: 20377618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local signals from beyond the receptive fields of striate cortical neurons.
    Müller JR; Metha AB; Krauskopf J; Lennie P
    J Neurophysiol; 2003 Aug; 90(2):822-31. PubMed ID: 12724358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of V1 surround modulation tuning on visual saliency and the tilt illusion.
    Keemink SW; Boucsein C; van Rossum MCW
    J Neurophysiol; 2018 Sep; 120(3):942-952. PubMed ID: 29847234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surround modulation in human vision unmasked by masking experiments.
    Yu C; Levi DM
    Nat Neurosci; 2000 Jul; 3(7):724-8. PubMed ID: 10862706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of feedforward thalamic afferents and corticogeniculate feedback to the spatial summation area of macaque V1 and LGN.
    Angelucci A; Sainsbury K
    J Comp Neurol; 2006 Sep; 498(3):330-51. PubMed ID: 16871526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surround suppression supports second-order feature encoding by macaque V1 and V2 neurons.
    Hallum LE; Movshon JA
    Vision Res; 2014 Nov; 104():24-35. PubMed ID: 25449336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary visual cortex neurons that contribute to resolve the aperture problem.
    Guo K; Robertson R; Nevado A; Pulgarin M; Mahmoodi S; Young MP
    Neuroscience; 2006; 138(4):1397-406. PubMed ID: 16446037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Receptive field properties of single neurons in rat primary visual cortex.
    Girman SV; Sauvé Y; Lund RD
    J Neurophysiol; 1999 Jul; 82(1):301-11. PubMed ID: 10400959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orientation-specific contextual modulation of the fMRI BOLD response to luminance and chromatic gratings in human visual cortex.
    McDonald JS; Seymour KJ; Schira MM; Spehar B; Clifford CW
    Vision Res; 2009 May; 49(11):1397-405. PubMed ID: 19167419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons.
    Cavanaugh JR; Bair W; Movshon JA
    J Neurophysiol; 2002 Nov; 88(5):2530-46. PubMed ID: 12424292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.