BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 14570251)

  • 21. Effects of APB, PDA, and TTX on ERG responses recorded using both multifocal and conventional methods in monkey. Effects of APB, PDA, and TTX on monkey ERG responses.
    Hare WA; Ton H
    Doc Ophthalmol; 2002 Sep; 105(2):189-222. PubMed ID: 12462444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Primate photopic sine-wave flicker ERG: vector modeling analysis of component origins using glutamate analogs.
    Kondo M; Sieving PA
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):305-12. PubMed ID: 11133883
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electroretinogram of the Cone-Dominant Thirteen-Lined Ground Squirrel during Euthermia and Hibernation in Comparison with the Rod-Dominant Brown Norway Rat.
    Zhang H; Sajdak BS; Merriman DK; McCall MA; Carroll J; Lipinski DM
    Invest Ophthalmol Vis Sci; 2020 Jun; 61(6):6. PubMed ID: 32492111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Opposite effects of nitric oxide on rod and cone photoreceptors of rat retina in situ.
    Sato M; Ohtsuka T
    Neurosci Lett; 2010 Mar; 473(1):62-6. PubMed ID: 20171265
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Primate Retinal Signaling Pathways: Suppressing ON-Pathway Activity in Monkey With Glutamate Analogues Mimics Human CSNB1-NYX Genetic Night Blindness.
    Khan NW; Kondo M; Hiriyanna KT; Jamison JA; Bush RA; Sieving PA
    J Neurophysiol; 2005 Jan; 93(1):481-92. PubMed ID: 15331616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pharmacological dissection of multifocal electroretinograms of rabbits with Pro347Leu rhodopsin mutation.
    Yokoyama D; Machida S; Kondo M; Terasaki H; Nishimura T; Kurosaka D
    Jpn J Ophthalmol; 2010 Sep; 54(5):458-66. PubMed ID: 21052910
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A proximal retinal component in the primate photopic ERG a-wave.
    Bush RA; Sieving PA
    Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):635-45. PubMed ID: 8113014
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differentiation of murine models of "negative ERG" by single and repetitive light stimuli.
    Tanimoto N; Akula JD; Fulton AB; Weber BH; Seeliger MW
    Doc Ophthalmol; 2016 Apr; 132(2):101-9. PubMed ID: 26996188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A spectral model for signal elements isolated from zebrafish photopic electroretinogram.
    Nelson RF; Singla N
    Vis Neurosci; 2009; 26(4):349-63. PubMed ID: 19723365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stimulus-evoked intrinsic optical signals in the retina: pharmacologic dissection reveals outer retinal origins.
    Schallek J; Kardon R; Kwon Y; Abramoff M; Soliz P; Ts'o D
    Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4873-80. PubMed ID: 19420331
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regressive and reactive changes in the connectivity patterns of rod and cone pathways of P23H transgenic rat retina.
    Cuenca N; Pinilla I; Sauvé Y; Lu B; Wang S; Lund RD
    Neuroscience; 2004; 127(2):301-17. PubMed ID: 15262321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Retinal origins of the primate multifocal ERG: implications for the human response.
    Hood DC; Frishman LJ; Saszik S; Viswanathan S
    Invest Ophthalmol Vis Sci; 2002 May; 43(5):1673-85. PubMed ID: 11980890
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temporal properties of the mouse cone electroretinogram.
    Krishna VR; Alexander KR; Peachey NS
    J Neurophysiol; 2002 Jan; 87(1):42-8. PubMed ID: 11784728
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A dissection of the electroretinogram from the isolated rat retina with microelectrodes and drugs.
    Green DG; Kapousta-Bruneau NV
    Vis Neurosci; 1999; 16(4):727-41. PubMed ID: 10431921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photoreceptor and post-photoreceptoral contributions to photopic ERG a-wave in rhodopsin P347L transgenic rabbits.
    Hirota R; Kondo M; Ueno S; Sakai T; Koyasu T; Terasaki H
    Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1467-72. PubMed ID: 22273723
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inner retinal contributions to the primate photopic fast flicker electroretinogram.
    Bush RA; Sieving PA
    J Opt Soc Am A Opt Image Sci Vis; 1996 Mar; 13(3):557-65. PubMed ID: 8627412
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of age on short-wavelength sensitive cone electroretinogram and long- and middle-wavelength sensitive cone electroretinogram.
    Suzuki S; Horiguchi M; Tanikawa A; Miyake Y; Kondo M
    Jpn J Ophthalmol; 1998; 42(5):424-30. PubMed ID: 9822976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rod and cone contributions to the a-wave of the electroretinogram of the macaque.
    Robson JG; Saszik SM; Ahmed J; Frishman LJ
    J Physiol; 2003 Mar; 547(Pt 2):509-30. PubMed ID: 12562933
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution of retinal neurons to d-wave of primate photopic electroretinograms.
    Ueno S; Kondo M; Ueno M; Miyata K; Terasaki H; Miyake Y
    Vision Res; 2006 Mar; 46(5):658-64. PubMed ID: 16039691
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On-response deficit in the electroretinogram of the cone system in X-linked retinoschisis.
    Alexander KR; Fishman GA; Barnes CS; Grover S
    Invest Ophthalmol Vis Sci; 2001 Feb; 42(2):453-9. PubMed ID: 11157882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.