These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 14570252)

  • 1. Topographies of retinal cone photoreceptors in two Australian marsupials.
    Arrese CA; Rodger J; Beazley LD; Shand J
    Vis Neurosci; 2003; 20(3):307-11. PubMed ID: 14570252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cone topography and spectral sensitivity in two potentially trichromatic marsupials, the quokka (Setonix brachyurus) and quenda (Isoodon obesulus).
    Arrese CA; Oddy AY; Runham PB; Hart NS; Shand J; Hunt DM; Beazley LD
    Proc Biol Sci; 2005 Apr; 272(1565):791-6. PubMed ID: 15888411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoreceptor topography and spectral sensitivity in the common brushtail possum (Trichosurus vulpecula).
    Vlahos LM; Knott B; Valter K; Hemmi JM
    J Comp Neurol; 2014 Oct; 522(15):3423-36. PubMed ID: 24737644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cone visual pigments in two marsupial species: the fat-tailed dunnart (Sminthopsis crassicaudata) and the honey possum (Tarsipes rostratus).
    Cowing JA; Arrese CA; Davies WL; Beazley LD; Hunt DM
    Proc Biol Sci; 2008 Jul; 275(1642):1491-9. PubMed ID: 18426754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of photoreceptor types in the retina of a marsupial, the tammar wallaby (Macropus eugenii).
    Hemmi JM; Grünert U
    Vis Neurosci; 1999; 16(2):291-302. PubMed ID: 10367964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trichromacy in Australian marsupials.
    Arrese CA; Hart NS; Thomas N; Beazley LD; Shand J
    Curr Biol; 2002 Apr; 12(8):657-60. PubMed ID: 11967153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The topography of rods, cones and intrinsically photosensitive retinal ganglion cells in the retinas of a nocturnal (Micaelamys namaquensis) and a diurnal (Rhabdomys pumilio) rodent.
    van der Merwe I; Lukáts Á; Bláhová V; Oosthuizen MK; Bennett NC; Němec P
    PLoS One; 2018; 13(8):e0202106. PubMed ID: 30092025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal structure and visual acuity in a polyprotodont marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata).
    Arrese C; Dunlop SA; Harman AM; Braekevelt CR; Ross WM; Shand J; Beazley LD
    Brain Behav Evol; 1999; 53(3):111-26. PubMed ID: 10085478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The topography of rod and cone photoreceptors in the retina of the ground squirrel.
    Kryger Z; Galli-Resta L; Jacobs GH; Reese BE
    Vis Neurosci; 1998; 15(4):685-91. PubMed ID: 9682870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The topography of cone photoreceptors in the retina of a diurnal rodent, the agouti (Dasyprocta aguti).
    Rocha FA; Ahnelt PK; Peichl L; Saito CA; Silveira LC; De Lima SM
    Vis Neurosci; 2009; 26(2):167-75. PubMed ID: 19250601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short and mid-wavelength cone distribution in a nocturnal Strepsirrhine primate (Microcebus murinus).
    Dkhissi-Benyahya O; Szel A; Degrip WJ; Cooper HM
    J Comp Neurol; 2001 Oct; 438(4):490-504. PubMed ID: 11559903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity of color vision: not all Australian marsupials are trichromatic.
    Ebeling W; Natoli RC; Hemmi JM
    PLoS One; 2010 Dec; 5(12):e14231. PubMed ID: 21151905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topography of photoreceptors and retinal ganglion cells in the spotted hyena (Crocuta crocuta).
    Calderone JB; Reese BE; Jacobs GH
    Brain Behav Evol; 2003; 62(4):182-92. PubMed ID: 14573992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topography of ganglion cells and photoreceptors in the sheep retina.
    Shinozaki A; Hosaka Y; Imagawa T; Uehara M
    J Comp Neurol; 2010 Jun; 518(12):2305-15. PubMed ID: 20437529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional topography of rod and immunocytochemically characterized "blue" and "green" cone photoreceptors in rabbit retina.
    Famiglietti EV; Sharpe SJ
    Vis Neurosci; 1995; 12(6):1151-75. PubMed ID: 8962834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the short wavelength-sensitive ("blue") cone mosaic in the primate retina: comparison of New World and Old World monkeys.
    Martin PR; Grünert U
    J Comp Neurol; 1999 Mar; 406(1):1-14. PubMed ID: 10100889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The retinal ganglion cell layer and optic nerve in a marsupial, the honey possum (Tarsipes rostratus).
    Dunlop SA; Ross WM; Beazley LD
    Brain Behav Evol; 1994; 44(6):307-23. PubMed ID: 7881997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cone visual pigments of the Australian marsupials, the stripe-faced and fat-tailed dunnarts: sequence and inferred spectral properties.
    Strachan J; Chang LY; Wakefield MJ; Graves JA; Deeb SS
    Vis Neurosci; 2004; 21(3):223-9. PubMed ID: 15518192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial order in short-wavelength-sensitive cone photoreceptors: a comparative study of the primate retina.
    Martin PR; Grünert U; Chan TL; Bumsted K
    J Opt Soc Am A Opt Image Sci Vis; 2000 Mar; 17(3):557-67. PubMed ID: 10708037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and distribution of photoreceptor subtypes in the neotenic tiger salamander retina.
    Sherry DM; Bui DD; Degrip WJ
    Vis Neurosci; 1998; 15(6):1175-87. PubMed ID: 9839981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.