These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 14570305)

  • 1. Acrylic matrix type nicotine transdermal patches: in vitro evaluations and batch-to-batch uniformity.
    Pongjanyakul T; Prakongpan S; Priprem A
    Drug Dev Ind Pharm; 2003 Sep; 29(8):843-53. PubMed ID: 14570305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biorelevant in vitro release/permeation system for oral transmucosal dosage forms.
    Delvadia PR; Barr WH; Karnes HT
    Int J Pharm; 2012 Jul; 430(1-2):104-13. PubMed ID: 22486954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Mild Hyperthermia on Transdermal Absorption of Nicotine from Patches.
    Panda A; Sharma PK; Narasimha Murthy S
    AAPS PharmSciTech; 2019 Jan; 20(2):77. PubMed ID: 30635802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast-drying multi-laminate bioadhesive films for transdermal and topical drug delivery.
    Donnelly RF; McCarron PA; Morrow DI; Woolfson AD
    Drug Dev Ind Pharm; 2013 Nov; 39(11):1818-31. PubMed ID: 23167263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Permeation studies comparing cobra skin with human skin using nicotine transdermal patches.
    Pongjanyakul T; Prakongpan S; Priprem A
    Drug Dev Ind Pharm; 2000 Jun; 26(6):635-42. PubMed ID: 10826111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel biomaterial for transdermal application: in vitro and in vivo characterization.
    Mundada AS; Avari JG
    Drug Deliv; 2011 Aug; 18(6):424-31. PubMed ID: 21554152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shed king cobra and cobra skins as model membranes for in-vitro nicotine permeation studies.
    Pongjanyakul T; Prakongpan S; Panomsuk S; Puttipipatkhachorn S; Priprem A
    J Pharm Pharmacol; 2002 Oct; 54(10):1345-50. PubMed ID: 12396295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Permeability test for transdermal and local therapeutic patches using Skin PAMPA method.
    Vizserálek G; Berkó S; Tóth G; Balogh R; Budai-Szűcs M; Csányi E; Sinkó B; Takács-Novák K
    Eur J Pharm Sci; 2015 Aug; 76():165-72. PubMed ID: 25957747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro study of transdermal nicotine delivery: influence of rate-controlling membranes and adhesives.
    Fang JY; Chen SS; Huang YB; Wu PC; Tsai YH
    Drug Dev Ind Pharm; 1999 Jun; 25(6):789-94. PubMed ID: 10349565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable UV-Crosslinkable Acrylic Pressure-Sensitive Adhesives for Medical Application.
    Ossowicz-Rupniewska P; Bednarczyk P; Nowak M; Nowak A; Duchnik W; Kucharski Ł; Rokicka J; Klimowicz A; Czech Z
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and in vitro/in vivo evaluations of bioadhesive buccal tablets for nicotine replacement therapy.
    Ikinci G; Senel S; Tokgözoğlu L; Wilson CG; Sumnu M
    Pharmazie; 2006 Mar; 61(3):203-7. PubMed ID: 16599260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monolithic matrix type transdermal drug delivery systems of pinacidil monohydrate: in vitro characterisation.
    Aqil M; Ali A
    Eur J Pharm Biopharm; 2002 Sep; 54(2):161-4. PubMed ID: 12191687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and in vitro evaluation of new drug-in-adhesive formulations of fentanyl transdermal patches.
    Mehdizadeh A; Toliate T; Rouini MR; Abashzadeh S; Dorkoosh F
    Acta Pharm; 2004 Dec; 54(4):301-17. PubMed ID: 15634614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro release studies on matrix type transdermal drug delivery systems of naltrexone and its acetyl prodrug.
    Nalluri BN; Milligan C; Chen J; Crooks PA; Stinchcomb AL
    Drug Dev Ind Pharm; 2005 Oct; 31(9):871-7. PubMed ID: 16305998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formulation and in vitro evaluation of polymeric films of diltiazem hydrochloride and indomethacin for transdermal administration.
    Rao PR; Diwan PV
    Drug Dev Ind Pharm; 1998 Apr; 24(4):327-36. PubMed ID: 9876592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled transdermal delivery of fentanyl: characterizations of pressure-sensitive adhesives for matrix patch design.
    Roy SD; Gutierrez M; Flynn GL; Cleary GW
    J Pharm Sci; 1996 May; 85(5):491-5. PubMed ID: 8742940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Release of chemical permeation enhancers from drug-in-adhesive transdermal patches.
    Qvist MH; Hoeck U; Kreilgaard B; Madsen F; Frokjaer S
    Int J Pharm; 2002 Jan; 231(2):253-63. PubMed ID: 11755277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulation design and in vitro ex vivo evaluation of transdermal patches of Cinnarizine.
    Yamsani VV; Mudulaghar MK; Afreen S; Wajid S; Ravula SK; Babelghaith SD
    Pak J Pharm Sci; 2017 Nov; 30(6):2075-2083. PubMed ID: 29175776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concentration dependency in nicotine skin penetration flux from aqueous solutions reflects vehicle induced changes in nicotine stratum corneum retention.
    Kuswahyuning R; Roberts MS
    Pharm Res; 2014 Jun; 31(6):1501-11. PubMed ID: 24452807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of patches for the controlled release of dehydroepiandrosterone.
    Minghetti P; Cilurzo F; Casiraghi A; Montanari L; Santoro A
    Drug Dev Ind Pharm; 2001 Aug; 27(7):711-7. PubMed ID: 11694019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.