These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 14570428)

  • 1. Patterns and trends in Southern Ontario lake ice phenology.
    Futter MN
    Environ Monit Assess; 2003; 88(1-3):431-44. PubMed ID: 14570428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What caused the spatial heterogeneity of lake ice phenology changes on the Tibetan Plateau?
    Cai Y; Ke CQ; Xiao Y; Wu J
    Sci Total Environ; 2022 Aug; 836():155517. PubMed ID: 35483456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate change alters the reproductive phenology and investment of a lacustrine fish, the three-spine stickleback.
    Hovel RA; Carlson SM; Quinn TP
    Glob Chang Biol; 2017 Jun; 23(6):2308-2320. PubMed ID: 27901297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ice phenology interactions with water and air temperatures in high mountain lakes.
    Sabás I; Miró A; Piera J; Catalan J; Camarero L; Buchaca T; Ventura M
    Sci Total Environ; 2024 Sep; 941():173571. PubMed ID: 38830415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does the 11-year solar cycle affect lake and river ice phenology?
    Schmidt DF; Grise KM; Pace ML
    PLoS One; 2023; 18(12):e0294995. PubMed ID: 38091313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Ice Phenology of Middle and Large Lakes on the Tibetan Plateau.
    Sun L; Wang B; Ma Y; Shi X; Wang Y
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Earlier ice loss accelerates lake warming in the Northern Hemisphere.
    Li X; Peng S; Xi Y; Woolway RI; Liu G
    Nat Commun; 2022 Sep; 13(1):5156. PubMed ID: 36056046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Species-specific phenological trends in shallow Pampean lakes' (Argentina) zooplankton driven by contemporary climate change in the Southern Hemisphere.
    Diovisalvi N; Odriozola M; Garcia de Souza J; Rojas Molina F; Fontanarrosa MS; Escaray R; Bustingorry J; Sanzano P; Grosman F; Zagarese H
    Glob Chang Biol; 2018 Nov; 24(11):5137-5148. PubMed ID: 30112780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine-scale monitoring of lake ice phenology by synthesizing remote sensed and climatologic features based on high-resolution satellite constellation and modeling.
    Tong J; Lin Y; Fan C; Liu K; Chen T; Zeng F; Zhan P; Ke L; Gao Y; Song C
    Sci Total Environ; 2024 Feb; 912():169002. PubMed ID: 38040347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local variation in the timing and advancement of lake ice breakup and impacts on settling dynamics in a migratory waterbird.
    Pöysä H
    Sci Total Environ; 2022 Mar; 811():151397. PubMed ID: 34740659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal trends, lake-to-lake variation, and climate effects on Arctic char (Salvelinus alpinus) mercury concentrations from six High Arctic lakes in Nunavut, Canada.
    Hudelson KE; Muir DCG; Drevnick PE; Köck G; Iqaluk D; Wang X; Kirk JL; Barst BD; Grgicak-Mannion A; Shearon R; Fisk AT
    Sci Total Environ; 2019 Aug; 678():801-812. PubMed ID: 31085496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen variations during the ice-on season in the eutrophic lakes.
    Yang T; Hei P; Song J; Zhang J; Zhu Z; Zhang Y; Yang J; Liu C; Jin J; Quan J
    Environ Pollut; 2019 Apr; 247():1089-1099. PubMed ID: 30823338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating lake ice thickness in Central Ontario.
    Murfitt JC; Brown LC; Howell SEL
    PLoS One; 2018; 13(12):e0208519. PubMed ID: 30521619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional impact of large-scale climate oscillations on ice out variability in New Brunswick and Maine.
    Walsh CR; Patterson RT
    PeerJ; 2022; 10():e13741. PubMed ID: 35999849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring of Lake Ice Phenology Changes in Bosten Lake Based on Bayesian Change Detection Algorithm and Passive Microwave Remote Sensing (PMRS) Data.
    Kuluwan Y; Rusuli Y; Ainiwaer M
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arctic lakes show strong decadal trend in earlier spring ice-out.
    Šmejkalová T; Edwards ME; Dash J
    Sci Rep; 2016 Dec; 6():38449. PubMed ID: 27924914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local snow melt and temperature-but not regional sea ice-explain variation in spring phenology in coastal Arctic tundra.
    Assmann JJ; Myers-Smith IH; Phillimore AB; Bjorkman AD; Ennos RE; Prevéy JS; Henry GHR; Schmidt NM; Hollister RD
    Glob Chang Biol; 2019 Jul; 25(7):2258-2274. PubMed ID: 30963662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe.
    Emberlin J; Detandt M; Gehrig R; Jaeger S; Nolard N; Rantio-Lehtimäki A
    Int J Biometeorol; 2002 Sep; 46(4):159-70. PubMed ID: 12242471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncertainty assessments and hydrological implications of climate change in two adjacent agricultural catchments of a rapidly urbanizing watershed.
    Oni SK; Futter MN; Molot LA; Dillon PJ; Crossman J
    Sci Total Environ; 2014 Mar; 473-474():326-37. PubMed ID: 24374594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Migration phenology and seasonal fidelity of an Arctic marine predator in relation to sea ice dynamics.
    Cherry SG; Derocher AE; Thiemann GW; Lunn NJ
    J Anim Ecol; 2013 Jul; 82(4):912-21. PubMed ID: 23510081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.