These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 14570452)

  • 1. Microbial synthesis of the energetic material precursor 1,2,4-butanetriol.
    Niu W; Molefe MN; Frost JW
    J Am Chem Soc; 2003 Oct; 125(43):12998-9. PubMed ID: 14570452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Arabidopsis for butanetriol production using bacterial genes.
    Abdel-Ghany SE; Day I; Heuberger AL; Broeckling CD; Reddy AS
    Metab Eng; 2013 Nov; 20():109-20. PubMed ID: 24126081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotechnological production of 1,2,4-butanetriol: An efficient process to synthesize energetic material precursor from renewable biomass.
    Cao Y; Niu W; Guo J; Xian M; Liu H
    Sci Rep; 2015 Dec; 5():18149. PubMed ID: 26670289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient production of 1,2,4-butanetriol from corn cob hydrolysate by metabolically engineered Escherichia coli.
    Li P; Wang M; Di H; Du Q; Zhang Y; Tan X; Xu P; Gao C; Jiang T; Lü C; Ma C
    Microb Cell Fact; 2024 Feb; 23(1):49. PubMed ID: 38347493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of an engineered Escherichia coli by a combined strategy of deleting branch pathway, fine-tuning xylose isomerase expression, and substituting decarboxylase to improve 1,2,4-butanetriol production.
    Jing P; Cao X; Lu X; Zong H; Zhuge B
    J Biosci Bioeng; 2018 Nov; 126(5):547-552. PubMed ID: 29945765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic pathway optimization for biosynthesis of 1,2,4-butanetriol from xylose by engineered Escherichia coli.
    Zhang N; Wang J; Zhang Y; Gao H
    Enzyme Microb Technol; 2016 Nov; 93-94():51-58. PubMed ID: 27702485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Candida tropicalis for efficient 1,2,4-butanetriol production.
    Li J; Xia Y; Wei B; Shen W; Yang H; Chen X
    Biochem Biophys Res Commun; 2024 May; 710():149876. PubMed ID: 38579537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial synthesis of 3-dehydroshikimic acid: a comparative analysis of D-xylose, L-arabinose, and D-glucose carbon sources.
    Li K; Frost JW
    Biotechnol Prog; 1999; 15(5):876-83. PubMed ID: 10514257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. d-1,2,4-Butanetriol production from renewable biomass with optimization of synthetic pathway in engineered Escherichia coli.
    Wang X; Xu N; Hu S; Yang J; Gao Q; Xu S; Chen K; Ouyang P
    Bioresour Technol; 2018 Feb; 250():406-412. PubMed ID: 29195152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of 1,2,4-butanetriol production from xylose in Saccharomyces cerevisiae by metabolic engineering of NADH/NADPH balance.
    Yukawa T; Bamba T; Guirimand G; Matsuda M; Hasunuma T; Kondo A
    Biotechnol Bioeng; 2021 Jan; 118(1):175-185. PubMed ID: 32902873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovering a novel D-xylonate-responsive promoter: the P
    Bañares AB; Valdehuesa KNG; Ramos KRM; Nisola GM; Lee WK; Chung WJ
    Appl Microbiol Biotechnol; 2019 Oct; 103(19):8063-8074. PubMed ID: 31482281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic pathway optimization for improved 1,2,4-butanetriol production.
    Sun L; Yang F; Sun H; Zhu T; Li X; Li Y; Xu Z; Zhang Y
    J Ind Microbiol Biotechnol; 2016 Jan; 43(1):67-78. PubMed ID: 26498325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High yield production of D-xylonic acid from D-xylose using engineered Escherichia coli.
    Liu H; Valdehuesa KN; Nisola GM; Ramos KR; Chung WJ
    Bioresour Technol; 2012 Jul; 115():244-8. PubMed ID: 21917451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress in research on the biosynthesis of 1,2,4-butanetriol by engineered microbes.
    Ma X; Sun C; Xian M; Guo J; Zhang R
    World J Microbiol Biotechnol; 2024 Jan; 40(2):68. PubMed ID: 38200399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved 1, 2, 4-butanetriol production from an engineered Escherichia coli by co-expression of different chaperone proteins.
    Lu X; He S; Zong H; Song J; Chen W; Zhuge B
    World J Microbiol Biotechnol; 2016 Sep; 32(9):149. PubMed ID: 27430516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Optimization of 1,2,4-butanetriol synthetic pathway in Escherichia coli].
    Sun L; Yang F; Zhu T; Li X; Sun H; Li Y; Xu Z; Zhang Y
    Sheng Wu Gong Cheng Xue Bao; 2016 Jan; 32(1):51-63. PubMed ID: 27363198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and construction of a non-natural malate to 1,2,4-butanetriol pathway creates possibility to produce 1,2,4-butanetriol from glucose.
    Li X; Cai Z; Li Y; Zhang Y
    Sci Rep; 2014 Jul; 4():5541. PubMed ID: 25008973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a pentonolactonase involved in D-xylose and L-arabinose catabolism in the haloarchaeon Haloferax volcanii.
    Sutter JM; Johnsen U; Schönheit P
    FEMS Microbiol Lett; 2017 Jul; 364(13):. PubMed ID: 28854683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of aldehyde reductase catalyzing the terminal step for conversion of xylose to butanetriol in engineered Escherichia coli.
    Valdehuesa KN; Lee WK; Ramos KR; Cabulong RB; Choi J; Liu H; Nisola GM; Chung WJ
    Bioprocess Biosyst Eng; 2015 Sep; 38(9):1761-72. PubMed ID: 26048478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-yield production of D-1,2,4-butanetriol from lignocellulose-derived xylose by using a synthetic enzyme cascade in a cell-free system.
    Gao Q; Wang X; Hu S; Xu N; Jiang M; Ma C; Yang J; Xu S; Chen K; Ouyang P
    J Biotechnol; 2019 Feb; 292():76-83. PubMed ID: 30703470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.