BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 14570483)

  • 1. Transition state differences in hydrolysis reactions of alkyl versus aryl phosphate monoester monoanions.
    Grzyska PK; Czyryca PG; Purcell J; Hengge AC
    J Am Chem Soc; 2003 Oct; 125(43):13106-11. PubMed ID: 14570483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic studies of protein tyrosine phosphatases YopH and Cdc25A with m-nitrobenzyl phosphate.
    McCain DF; Grzyska PK; Wu L; Hengge AC; Zhang ZY
    Biochemistry; 2004 Jun; 43(25):8256-64. PubMed ID: 15209522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparisons of phosphorothioate with phosphate transfer reactions for a monoester, diester, and triester: isotope effect studies.
    Catrina IE; Hengge AC
    J Am Chem Soc; 2003 Jun; 125(25):7546-52. PubMed ID: 12812494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examination of P-OR bridging bond orders in phosphate monoesters using (18)O isotope shifts in 31P NMR.
    Sorensen-Stowell K; Hengge AC
    J Org Chem; 2005 Jun; 70(12):4805-9. PubMed ID: 15932321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered mechanisms of reactions of phosphate esters bridging a dinuclear metal center.
    Humphry T; Forconi M; Williams NH; Hengge AC
    J Am Chem Soc; 2004 Sep; 126(38):11864-9. PubMed ID: 15382921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The thermodynamics of phosphate versus phosphorothioate ester hydrolysis.
    Purcell J; Hengge AC
    J Org Chem; 2005 Oct; 70(21):8437-42. PubMed ID: 16209589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the transition-state structure of dual-specificity protein phosphatases using a physiological substrate mimic.
    Grzyska PK; Kim Y; Jackson MD; Hengge AC; Denu JM
    Biochemistry; 2004 Jul; 43(27):8807-14. PubMed ID: 15236589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An altered mechanism of hydrolysis for a metal-complexed phosphate diester.
    Humphry T; Forconi M; Williams NH; Hengge AC
    J Am Chem Soc; 2002 Dec; 124(50):14860-1. PubMed ID: 12475323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing potential medium effects on phosphate ester bonds using 18O isotope shifts on 31P NMR.
    Sorensen-Stowell K; Hengge AC
    J Org Chem; 2005 Oct; 70(21):8303-8. PubMed ID: 16209571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical evaluation of the substrate-assisted catalysis mechanism for the hydrolysis of phosphate monoester dianions.
    Iché-Tarrat N; Ruiz-Lopez M; Barthelat JC; Vigroux A
    Chemistry; 2007; 13(13):3617-29. PubMed ID: 17290469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of solvent nucleophile isotope effects: evidence for concerted mechanisms and nucleophilic activation by metal coordination in nonenzymatic and ribozyme-catalyzed phosphodiester hydrolysis.
    Cassano AG; Anderson VE; Harris ME
    Biochemistry; 2004 Aug; 43(32):10547-59. PubMed ID: 15301552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transesterification thio effects of phosphate diesters: free energy barriers and kinetic and equilibrium isotope effects from density-functional theory.
    Liu Y; Gregersen BA; Hengge A; York DM
    Biochemistry; 2006 Aug; 45(33):10043-53. PubMed ID: 16906762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isotope effects and medium effects on sulfuryl transfer reactions.
    Hoff RH; Larsen P; Hengge AC
    J Am Chem Soc; 2001 Sep; 123(38):9338-44. PubMed ID: 11562216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generality of solvation effects on the hydrolysis rates of phosphate monoesters and their possible relevance to enzymatic catalysis.
    Grzyska PK; Czyryca PG; Golightly J; Small K; Larsen P; Hoff RH; Hengge AC
    J Org Chem; 2002 Feb; 67(4):1214-20. PubMed ID: 11846665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implications of protonation and substituent effects for C-O and O-P bond cleavage in phosphate monoesters.
    Loncke PG; Berti PJ
    J Am Chem Soc; 2006 May; 128(18):6132-40. PubMed ID: 16669682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mechanistic study of the alkaline hydrolysis of diaryl sulfate diesters.
    Younker JM; Hengge AC
    J Org Chem; 2004 Dec; 69(26):9043-8. PubMed ID: 15609936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of protonation on the mechanism of phosphate monoester hydrolysis and comparison with the hydrolysis of nucleoside triphosphate in biomolecular motors.
    Hassan HA; Rani S; Fatima T; Kiani FA; Fischer S
    Biophys Chem; 2017 Nov; 230():27-35. PubMed ID: 28941815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivity of phosphate monoester monoanions in aqueous solution. 1. Quantum mechanical calculations support the existence of "anionic zwitterion" MeO(+)(H)PO(3)(2-) as a key intermediate in the dissociative hydrolysis of the methyl phosphate anion.
    Bianciotto M; Barthelat JC; Vigroux A
    J Am Chem Soc; 2002 Jun; 124(25):7573-87. PubMed ID: 12071768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition-state structures for the native dual-specific phosphatase VHR and D92N and S131A mutants. Contributions to the driving force for catalysis.
    Hengge AC; Denu JM; Dixon JE
    Biochemistry; 1996 Jun; 35(22):7084-92. PubMed ID: 8679534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition State Analysis of the Reaction Catalyzed by the Phosphotriesterase from Sphingobium sp. TCM1.
    Bigley AN; Xiang DF; Narindoshvili T; Burgert CW; Hengge AC; Raushel FM
    Biochemistry; 2019 Mar; 58(9):1246-1259. PubMed ID: 30730705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.