These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 14571282)
1. Measurement of dopamine receptor-mediated jaw movements by a magnet-sensing system in freely moving rats. Lee J; Adachi K; Gionhaku N; Fujita S; Uchida T; Koshikawa N Methods Find Exp Clin Pharmacol; 2003 Sep; 25(7):525-30. PubMed ID: 14571282 [TBL] [Abstract][Full Text] [Related]
2. Evidence that angiotensin II enhances apomorphine-induced jaw movements via AT1 receptors in the ventrolateral striatum: studies by magnet-sensing system in freely moving rats. Lee J; Adachi K; Gionhaku N; Fujita S; Uchida T; Gerstner GE; Koshikawa N Methods Find Exp Clin Pharmacol; 2004 Apr; 26(3):195-9. PubMed ID: 15148525 [TBL] [Abstract][Full Text] [Related]
3. Effects of NMDA and MK-801 injected into the substantia nigra pars reticulata on jaw movements evoked by dopamine D1-/D2 receptor stimulation in the ventrolateral striatum: studies in freely moving rats. Uchida T; Lee J; Fujita S; Kiguchi M; Matsumoto M; Oi Y; Gionhaku N; Koshikawa N Methods Find Exp Clin Pharmacol; 2005; 27(1):31-7. PubMed ID: 15834457 [TBL] [Abstract][Full Text] [Related]
4. 5-HT(1A) and 5-HT(1B) receptors in the ventrolateral striatum differentially modulate apomorphine-induced jaw movements in rats. Fujita S; Kiguchi M; Lee J; Terakado M; Suga K; Hatanaka H; Koshikawa N J Oral Sci; 2008 Dec; 50(4):387-95. PubMed ID: 19106465 [TBL] [Abstract][Full Text] [Related]
5. Assessment of jaw movements by magnetic sensor in relation to topographies of orofacial behaviour in freely moving rats: Studies with the dopamine D(1)-like receptor agonists SKF 83822 vs SKF 83959. Fujita S; Kiguchi M; Kobayashi M; Kinsella A; Koshikawa N; Waddington JL Eur J Pharmacol; 2010 Apr; 632(1-3):39-44. PubMed ID: 20122923 [TBL] [Abstract][Full Text] [Related]
6. Dopaminergic and cholinergic stimulation of the ventrolateral striatum elicit rat jaw movements that are funnelled via distinct efferents. Adachi K; Hasegawa M; Fujita S; Sato M; Miwa Y; Ikeda H; Koshikawa N; Cools AR Eur J Pharmacol; 2002 May; 442(1-2):81-92. PubMed ID: 12020685 [TBL] [Abstract][Full Text] [Related]
7. The superior colliculus contains a discrete region involved in the control of jaw movements: role of GABAA receptors. Adachi K; Hasegawa M; Ikeda H; Sato M; Koshikawa N; Cools AR Eur J Pharmacol; 2003 Mar; 464(2-3):147-54. PubMed ID: 12620507 [TBL] [Abstract][Full Text] [Related]
8. Dopamine D-1 but not D-2 receptor stimulation of the dorsal striatum potentiates apomorphine-induced jaw movements in rats. Koshikawa N; Tomiyama K; Omiya K; de Beltrán KK; Kobayashi M Eur J Pharmacol; 1990 Mar; 178(2):189-94. PubMed ID: 1970305 [TBL] [Abstract][Full Text] [Related]
9. Behavioral responses to methylphenidate and apomorphine in rats exposed neonatally to bisphenol-A. Kiguchi M; Fujita S; Lee J; Shimizu N; Koshikawa N J Oral Sci; 2007 Dec; 49(4):311-8. PubMed ID: 18195515 [TBL] [Abstract][Full Text] [Related]
10. Involvement of NMDA receptors in the ventrolateral striatum of rats in apomorphine-induced jaw movements. Fujita S; Kiguchi M; Kobayashi M; Koshikawa N; Waddington JL Brain Res; 2010 Mar; 1322():30-7. PubMed ID: 20122906 [TBL] [Abstract][Full Text] [Related]
11. Vacuous jaw movements induced by acute reserpine and low-dose apomorphine: possible model of parkinsonian tremor. Salamone J; Baskin P Pharmacol Biochem Behav; 1996 Jan; 53(1):179-83. PubMed ID: 8848448 [TBL] [Abstract][Full Text] [Related]
12. SK&F 83959 and non-cyclase-coupled dopamine D1-like receptors in jaw movements via dopamine D1-like/D2-like receptor synergism. Adachi K; Ikeda H; Hasegawa M; Nakamura S; Waddington JL; Koshikawa N Eur J Pharmacol; 1999 Feb; 367(2-3):143-9. PubMed ID: 10078986 [TBL] [Abstract][Full Text] [Related]
13. Vacuous jaw movements in rats induced by acute reserpine administration: interactions with different doses of apomorphine. Baskin P; Salamone J Pharmacol Biochem Behav; 1993 Dec; 46(4):793-7. PubMed ID: 8309957 [TBL] [Abstract][Full Text] [Related]
14. A simple and inexpensive system for monitoring jaw movements in ambulatory humans. Flavel SC; Nordstrom MA; Miles TS J Biomech; 2002 May; 35(5):573-7. PubMed ID: 11955496 [TBL] [Abstract][Full Text] [Related]
15. Decreased postsynaptic dopaminergic and cholinergic functions in the ventrolateral striatum of spontaneously hypertensive rat. Fujita S; Adachi K; Lee J; Uchida T; Koshikawa N; Cools AR Eur J Pharmacol; 2004 Jan; 484(1):75-82. PubMed ID: 14729384 [TBL] [Abstract][Full Text] [Related]
16. Development of a three-dimensional jaw-tracking system implanted in the freely moving mouse. Koga Y; Yoshida N; Kobayashi K; Ichiro Okayasu ; Yamada Y Med Eng Phys; 2001 Apr; 23(3):201-6. PubMed ID: 11410385 [TBL] [Abstract][Full Text] [Related]
18. Role of GABA(A) receptors in the retrorubral field and ventral pallidum in rat jaw movements elicited by dopaminergic stimulation of the nucleus accumbens shell. Uchida T; Adachi K; Fujita S; Lee J; Gionhaku N; Cools AR; Koshikawa N Eur J Pharmacol; 2005 Mar; 510(1-2):39-47. PubMed ID: 15740723 [TBL] [Abstract][Full Text] [Related]
19. Comparative phenotypic resolution of spontaneous, D2-like and D1-like agonist-induced orofacial movement topographies in congenic mutants with dopamine D2 vs. D3 receptor "knockout". Tomiyama K; McNamara FN; Clifford JJ; Kinsella A; Drago J; Fuchs S; Grandy DK; Low MJ; Rubinstein M; Tighe O; Croke DT; Koshikawa N; Waddington JL Synapse; 2004 Jan; 51(1):71-81. PubMed ID: 14579426 [TBL] [Abstract][Full Text] [Related]
20. "On-line" monitoring of jaw movements in the pigeon. Deich JD; Houben D; Allan RW; Zeigler HP Physiol Behav; 1985 Aug; 35(2):307-11. PubMed ID: 4070401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]