BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 14571949)

  • 1. Naphthalene and anthracene mineralization linked to oxygen, nitrate, Fe(III) and sulphate reduction in a mixed microbial population.
    Ramsay JA; Li H; Brown RS; Ramsay BA
    Biodegradation; 2003 Oct; 14(5):321-9. PubMed ID: 14571949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced natural attenuation of BTEX in the nitrate-reducing environment by different electron acceptors.
    Zhao Y; Qu D; Hou Z; Zhou R
    Environ Technol; 2015; 36(5-8):615-21. PubMed ID: 25185793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling the electronic structures of low-valent naphthalene and anthracene iron complexes: X-ray, spectroscopic, and density functional theory studies.
    Schnöckelborg EM; Khusniyarov MM; de Bruin B; Hartl F; Langer T; Eul M; Schulz S; Pöttgen R; Wolf R
    Inorg Chem; 2012 Jun; 51(12):6719-30. PubMed ID: 22639983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrate supply and sulfate-reducing suppression facilitate the removal of pentachlorophenol in a flooded mangrove soil.
    Cheng J; Xue L; Zhu M; Feng J; Shen-Tu J; Xu J; Brookes PC; Tang C; He Y
    Environ Pollut; 2019 Jan; 244():792-800. PubMed ID: 30390452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic bioremediation of marine sediment artificially contaminated with anthracene and naphthalene.
    Agarry SE; Owabor CN
    Environ Technol; 2011; 32(11-12):1375-81. PubMed ID: 21970179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions.
    Dou J; Liu X; Ding A
    J Hazard Mater; 2009 Jun; 165(1-3):325-31. PubMed ID: 19013017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in iso- and n-alkane distribution during biodegradation of crude oil under nitrate and sulphate reducing conditions.
    Hasinger M; Scherr KE; Lundaa T; Bräuer L; Zach C; Loibner AP
    J Biotechnol; 2012 Feb; 157(4):490-8. PubMed ID: 22001845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic biodegradation of naphthalene, phenanthrene, and biphenyl by a denitrifying enrichment culture.
    Rockne KJ; Strand SE
    Water Res; 2001 Jan; 35(1):291-9. PubMed ID: 11257884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence and rates of terminal electron-accepting processes and recharge processes in petroleum hydrocarbon-contaminated subsurface.
    Salminen JM; Hänninen PJ; Leveinen J; Lintinen PT; Jørgensen KS
    J Environ Qual; 2006; 35(6):2273-82. PubMed ID: 17071898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of Nitrate Amendment on Soil Denitrification Activity and Anthracene Anaerobic Degradation].
    Dai JS; Zuo XH; Wang MX; Yao YH; Zhou ZF
    Huan Jing Ke Xue; 2018 Jan; 39(1):422-429. PubMed ID: 29965710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of soil/contaminant interactions on the biodegradation of naphthalene in flooded soil under denitrifying conditions.
    al-Bashir B; Cseh T; Leduc R; Samson R
    Appl Microbiol Biotechnol; 1990 Dec; 34(3):414-9. PubMed ID: 1367196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soil-water systems.
    Mihelcic JR; Luthy RG
    Appl Environ Microbiol; 1988 May; 54(5):1188-98. PubMed ID: 3389812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of PAH biomineralization rates by cyclodextrins under Fe(III)-reducing conditions.
    Ramsay JA; Robertson K; vanLoon G; Acay N; Ramsay BA
    Chemosphere; 2005 Nov; 61(5):733-40. PubMed ID: 16219508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.
    Chen YD; Barker JF; Gui L
    J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of nickel on the mineralization of hydrocarbons by indigenous microbiota in Kuwait soils.
    Al-Saleh ES; Obuekwe C
    J Basic Microbiol; 2009 Jun; 49(3):256-63. PubMed ID: 19219899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils.
    Aleer S; Adetutu EM; Weber J; Ball AS; Juhasz AL
    J Environ Manage; 2014 Apr; 136():27-36. PubMed ID: 24553295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence analysis of polyaromatic hydrocarbon photodegradation in the presence of polypropylene microfibers.
    Tchaikovskaya ON; Kraukhina VS; Artjyshin VR; Petrova AY
    Luminescence; 2019 Sep; 34(6):553-557. PubMed ID: 31006974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular diagnostics of polycyclic aromatic hydrocarbon biodegradation in manufactured gas plant soils.
    Sanseverino J; Werner C; Fleming J; Applegate B; King JM; Sayler GS
    Biodegradation; 1993-1994; 4(4):303-21. PubMed ID: 7516749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of phenolic compounds and their metabolites in contaminated groundwater using microbial fuel cells.
    Hedbavna P; Rolfe SA; Huang WE; Thornton SF
    Bioresour Technol; 2016 Jan; 200():426-34. PubMed ID: 26512868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of microbial natural attenuation in groundwater polluted with gasworks residues.
    Schulze S; Tiehm A
    Water Sci Technol; 2004; 50(5):347-53. PubMed ID: 15497868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.