These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A biokinetic model for predicting the retention of 3H in the human body after intakes of tritiated water. Taylor DM Radiat Prot Dosimetry; 2003; 105(1-4):225-8. PubMed ID: 14526960 [TBL] [Abstract][Full Text] [Related]
5. Structure of a physiologically based biokinetic model for use in 14C and organically bound tritium dosimetry. Whillans DW Radiat Prot Dosimetry; 2003; 105(1-4):189-91. PubMed ID: 14526954 [TBL] [Abstract][Full Text] [Related]
6. Towards a model for the dynamic transfer of tritium and carbon in mammals. Galeriu D; Beresford NA; Takeda H; Melintescu A; Crout NM Radiat Prot Dosimetry; 2003; 105(1-4):387-90. PubMed ID: 14526993 [TBL] [Abstract][Full Text] [Related]
7. Reassessment of tritium dose coefficients for the general public. Melintescu A; Galeriu D; Takeda H Radiat Prot Dosimetry; 2007; 127(1-4):153-7. PubMed ID: 17573366 [TBL] [Abstract][Full Text] [Related]
8. Radiation dose to mouse liver cells from ingestion of tritiated food or water. Komatsu K; Okumura Y; Sakamoto K Health Phys; 1990 May; 58(5):625-9. PubMed ID: 2341252 [TBL] [Abstract][Full Text] [Related]
9. Dosimetry of metal tritide particles as evaluated by the ICRP 66 model and a biokinetic model from laboratory rats. Zhou Y; Cheng YS Health Phys; 2004 Feb; 86(2):155-60. PubMed ID: 14744049 [TBL] [Abstract][Full Text] [Related]
10. Application of the ICRP clarification of the tritium metabolic model. Potter CA Health Phys; 2004 Oct; 87(4):375-81. PubMed ID: 15359184 [TBL] [Abstract][Full Text] [Related]
11. Blood tritium level as an estimate of soft tissue dose. Saito M Radiat Prot Dosimetry; 2003; 105(1-4):417-20. PubMed ID: 14527000 [TBL] [Abstract][Full Text] [Related]
12. Review of the ICRP tritium and 14C internal dosimetry models and their implementation in the Genmod-PC code. Richardson RB; Dunford DW Health Phys; 2001 Sep; 81(3):289-301. PubMed ID: 11513462 [TBL] [Abstract][Full Text] [Related]
13. Uncertainties in dose coefficients from ingestion of 131I, 137Cs, and 90Sr. Apostoaei AI; Miller LF Health Phys; 2004 May; 86(5):460-82. PubMed ID: 15083142 [TBL] [Abstract][Full Text] [Related]
15. Doses from the consumption of Cardiff Bay flounder containing organically bound tritium. Hodgson A; Scott JE; Fell TP; Harrison JD J Radiol Prot; 2005 Jun; 25(2):149-59. PubMed ID: 15942058 [TBL] [Abstract][Full Text] [Related]
16. Estimation of radiation dose from ingested tritium in humans by administration of deuterium-labelled compounds and food. Masuda T; Yoshioka T Sci Rep; 2021 Feb; 11(1):2816. PubMed ID: 33531641 [TBL] [Abstract][Full Text] [Related]
17. Incorporation and distribution of tritium in rats exposed to tritiated rice or tritiated soybean. Takeda H; Iwakura T J Radiat Res; 1992 Dec; 33(4):309-18. PubMed ID: 1293301 [TBL] [Abstract][Full Text] [Related]
18. Validating the application of the revised ICRP's biokinetic models for organic Masuda T; Manabe K J Radiol Prot; 2024 Sep; 44(3):. PubMed ID: 39265584 [TBL] [Abstract][Full Text] [Related]
19. A metabolic approach to simulating the dynamics of C-14, H-3 and S-35 in sheep tissues. Crout NM; Mayes RW; Beresford NA; Lamb CS; Howard BJ Radiat Environ Biophys; 1998 Feb; 36(4):243-50. PubMed ID: 9523340 [TBL] [Abstract][Full Text] [Related]
20. Comparative biokinetics of tritium in rats during continuous ingestion of tritiated water and tritium-labeled food. Takeda H; Lu HM; Miyamoto K; Fuma S; Yanagisawa K; Ishii N; Kuroda N Int J Radiat Biol; 2001 Mar; 77(3):375-81. PubMed ID: 11258852 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]