BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 14572009)

  • 1. Mathematical study of the role of non-linear venous compliance in the cranial volume-pressure test.
    Cirovic S; Walsh C; Fraser WD
    Med Biol Eng Comput; 2003 Sep; 41(5):579-88. PubMed ID: 14572009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is posture-related craniospinal compliance shift caused by jugular vein collapse? A theoretical analysis.
    Gehlen M; Kurtcuoglu V; Schmid Daners M
    Fluids Barriers CNS; 2017 Feb; 14(1):5. PubMed ID: 28209177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase contrast MRI quantification of pulsatile volumes of brain arteries, veins, and cerebrospinal fluids compartments: repeatability and physiological interactions.
    Wåhlin A; Ambarki K; Hauksson J; Birgander R; Malm J; Eklund A
    J Magn Reson Imaging; 2012 May; 35(5):1055-62. PubMed ID: 22170792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cerebral venous system and the postural regulation of intracranial pressure: implications in the management of patients with cerebrospinal fluid diversion.
    Barami K; Sood S
    Childs Nerv Syst; 2016 Apr; 32(4):599-607. PubMed ID: 26767844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics.
    Ursino M; Lodi CA
    J Appl Physiol (1985); 1997 Apr; 82(4):1256-69. PubMed ID: 9104864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Starling resistors, autoregulation of cerebral perfusion and the pathogenesis of idiopathic intracranial hypertension.
    DE Simone R; Ranieri A; Bonavita V
    Panminerva Med; 2017 Mar; 59(1):76-89. PubMed ID: 27598891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resistances and compliances of a compartmental model of the cerebrovascular system.
    Sorek S; Bear J; Karni Z
    Ann Biomed Eng; 1989; 17(1):1-12. PubMed ID: 2919810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of brain, blood, and CSF: a novel mathematical model of cerebral edema.
    Doron O; Zadka Y; Barnea O; Rosenthal G
    Fluids Barriers CNS; 2021 Sep; 18(1):42. PubMed ID: 34530863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model for an inverse power constitutive law for cerebral compliance.
    Wirth B; Sobey I
    Math Med Biol; 2008 Jun; 25(2):113-31. PubMed ID: 18515261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebrovascular response to changes of cerebral venous pressure and cerebrospinal fluid pressure.
    Kato Y; Mokry M; Pucher R; Auer LM
    Acta Neurochir (Wien); 1991; 109(1-2):52-6. PubMed ID: 2068968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral venous blood outflow: a theoretical model based on laboratory simulation.
    Piechnik SK; Czosnyka M; Richards HK; Whitfield PC; Pickard JD
    Neurosurgery; 2001 Nov; 49(5):1214-22; discussion 1222-3. PubMed ID: 11846915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction among autoregulation, CO2 reactivity, and intracranial pressure: a mathematical model.
    Ursino M; Lodi CA
    Am J Physiol; 1998 May; 274(5):H1715-28. PubMed ID: 9612384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography.
    Greitz D
    Acta Radiol Suppl; 1993; 386():1-23. PubMed ID: 8517189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydraulic model of the cerebrovascular bed: an aid to understanding the volume-pressure test.
    Chopp M; Portnoy HD; Branch C
    Neurosurgery; 1983 Jul; 13(1):5-11. PubMed ID: 6877565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracranial versus intracranial hydro-hemodynamics during aging: a PC-MRI pilot cross-sectional study.
    Lokossou A; Metanbou S; Gondry-Jouet C; Balédent O
    Fluids Barriers CNS; 2020 Jan; 17(1):1. PubMed ID: 31931818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monro-Kellie 2.0: The dynamic vascular and venous pathophysiological components of intracranial pressure.
    Wilson MH
    J Cereb Blood Flow Metab; 2016 Aug; 36(8):1338-50. PubMed ID: 27174995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluid-structure Interaction in the Cerebral Venous Transverse Sinus.
    Shim EB; Heldt T
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4544-4547. PubMed ID: 30441362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic-mathematical modeling of intracranial pressure (ICP) profiles over a single heart cycle. The fundament of the ICP curve form.
    Domogo AA; Reinstrup P; Ottesen JT
    J Theor Biol; 2023 May; 564():111451. PubMed ID: 36907263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mathematical model of the intracranial system including autoregulation.
    Kadas ZM; Lakin WD; Yu J; Penar PL
    Neurol Res; 1997 Aug; 19(4):441-50. PubMed ID: 9263228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.