BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 14572044)

  • 1. Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells.
    Park EJ; Brasuel M; Behrend C; Philbert MA; Kopelman R
    Anal Chem; 2003 Aug; 75(15):3784-91. PubMed ID: 14572044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fluorescent PEBBLE nanosensor for intracellular free zinc.
    Sumner JP; Aylott JW; Monson E; Kopelman R
    Analyst; 2002 Jan; 127(1):11-6. PubMed ID: 11827375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors.
    Clark HA; Kopelman R; Tjalkens R; Philbert MA
    Anal Chem; 1999 Nov; 71(21):4837-43. PubMed ID: 10565275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent nanosensors for intracellular chemical analysis: decyl methacrylate liquid polymer matrix and ion-exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells.
    Brasuel M; Kopelman R; Miller TJ; Tjalkens R; Philbert MA
    Anal Chem; 2001 May; 73(10):2221-8. PubMed ID: 11393844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma.
    Xu H; Aylott JW; Kopelman R; Miller TJ; Philbert MA
    Anal Chem; 2001 Sep; 73(17):4124-33. PubMed ID: 11569801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors.
    Koo YE; Cao Y; Kopelman R; Koo SM; Brasuel M; Philbert MA
    Anal Chem; 2004 May; 76(9):2498-505. PubMed ID: 15117189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging.
    Xu H; Aylott JW; Kopelman R
    Analyst; 2002 Nov; 127(11):1471-7. PubMed ID: 12475037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors.
    Clark HA; Hoyer M; Philbert MA; Kopelman R
    Anal Chem; 1999 Nov; 71(21):4831-6. PubMed ID: 10565274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized ratiometric fluorescence nanosensors based on carbon dots and an advanced chemometric model.
    Yan XF; Chen ZP; Huang Y; Kang C; Yu RQ
    Talanta; 2019 Jan; 192():233-240. PubMed ID: 30348383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer-free optode nanosensors for dynamic, reversible, and ratiometric sodium imaging in the physiological range.
    Ruckh TT; Mehta AA; Dubach JM; Clark HA
    Sci Rep; 2013 Nov; 3():3366. PubMed ID: 24284431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-photon nano-PEBBLE sensors: subcellular pH measurements.
    Ray A; Koo Lee YE; Epstein T; Kim G; Kopelman R
    Analyst; 2011 Sep; 136(18):3616-22. PubMed ID: 21773602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative generalized ratiometric fluorescence spectroscopy for turbid media based on probe encapsulated by biologically localized embedding.
    Yan XF; Chen ZP; Cui YY; Hu YL; Yu RQ
    Anal Chim Acta; 2016 May; 921():38-45. PubMed ID: 27126788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid polymer nano-PEBBLEs for Cl- analysis and biological applications.
    Brasuel MG; Miller TJ; Kopelman R; Philbert MA
    Analyst; 2003 Oct; 128(10):1262-7. PubMed ID: 14667163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ratiometric singlet oxygen nano-optodes and their use for monitoring photodynamic therapy nanoplatforms.
    Cao Y; Koo YE; Koo SM; Kopelman R
    Photochem Photobiol; 2005; 81(6):1489-98. PubMed ID: 16107183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle PEBBLE sensors in live cells.
    Lee YE; Kopelman R
    Methods Enzymol; 2012; 504():419-70. PubMed ID: 22264547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for estimating intracellular ion concentration using optical nanosensors and ratiometric imaging.
    Rong G; Kim EH; Poskanzer KE; Clark HA
    Sci Rep; 2017 Sep; 7(1):10819. PubMed ID: 28883429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and synthesis of highly sensitive and selective fluorescein-derived magnesium fluorescent probes and application to intracellular 3D Mg2+ imaging.
    Komatsu H; Iwasawa N; Citterio D; Suzuki Y; Kubota T; Tokuno K; Kitamura Y; Oka K; Suzuki K
    J Am Chem Soc; 2004 Dec; 126(50):16353-60. PubMed ID: 15600336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optochemical nanosensor PEBBLEs: photonic explorers for bioanalysis with biologically localized embedding.
    Buck SM; Koo YE; Park E; Xu H; Philbert MA; Brasuel MA; Kopelman R
    Curr Opin Chem Biol; 2004 Oct; 8(5):540-6. PubMed ID: 15450498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale probes encapsulated by biologically localized embedding (PEBBLEs) for ion sensing and imaging in live cells.
    Buck SM; Xu H; Brasuel M; Philbert MA; Kopelman R
    Talanta; 2004 May; 63(1):41-59. PubMed ID: 18969403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(decyl methacrylate)-based fluorescent PEBBLE swarm nanosensors for measuring dissolved oxygen in biosamples.
    Cao Y; Lee Koo YE; Kopelman R
    Analyst; 2004 Aug; 129(8):745-50. PubMed ID: 15284919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.