BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 14572056)

  • 1. Layered double hydroxides: an attractive material for electrochemical biosensor design.
    Shan D; Cosnier S; Mousty C
    Anal Chem; 2003 Aug; 75(15):3872-9. PubMed ID: 14572056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Urea biosensors based on immobilization of urease into two oppositely charged clays (laponite and Zn-Al layered double hydroxides).
    de Melo JV; Cosnier S; Mousty C; Martelet C; Jaffrezic-Renault N
    Anal Chem; 2002 Aug; 74(16):4037-43. PubMed ID: 12199571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid material based on chitosan and layered double hydroxides: characterization and application to the design of amperometric phenol biosensor.
    Han E; Shan D; Xue H; Cosnier S
    Biomacromolecules; 2007 Mar; 8(3):971-5. PubMed ID: 17253764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quaternary ammonium functionalized clay film electrodes modified with polyphenol oxidase for the sensitive detection of catechol.
    Mbouguen JK; Ngameni E; Walcarius A
    Biosens Bioelectron; 2007 Sep; 23(2):269-75. PubMed ID: 17537626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laccase immobilization in redox active layered double hydroxides: a reagentless amperometric biosensor.
    Mousty C; Vieille L; Cosnier S
    Biosens Bioelectron; 2007 Mar; 22(8):1733-8. PubMed ID: 17023155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amperometric phenol biosensor based on laponite clay-chitosan nanocomposite matrix.
    Fan Q; Shan D; Xue H; He Y; Cosnier S
    Biosens Bioelectron; 2007 Jan; 22(6):816-21. PubMed ID: 16624546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amperometric catechol biosensor based on polyaniline-polyphenol oxidase.
    Tan Y; Guo X; Zhang J; Kan J
    Biosens Bioelectron; 2010 Mar; 25(7):1681-7. PubMed ID: 20060283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on electrochemical biosensing platform based on layered double hydroxides for small molecule biomarkers determination.
    Asif M; Aziz A; Azeem M; Wang Z; Ashraf G; Xiao F; Chen X; Liu H
    Adv Colloid Interface Sci; 2018 Dec; 262():21-38. PubMed ID: 30428998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subnanomolar cyanide detection at polyphenol oxidase/clay biosensors.
    Shan D; Mousty C; Cosnier S
    Anal Chem; 2004 Jan; 76(1):178-83. PubMed ID: 14697048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical study of ferrocenemethanol-modified layered double hydroxides composite matrix: application to glucose amperometric biosensor.
    Shan D; Yao W; Xue H
    Biosens Bioelectron; 2007 Oct; 23(3):432-7. PubMed ID: 17720475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MgFe-layered double hydroxide modified electrodes for direct electron transfer of heme proteins.
    Li M; Ji H; Wang Y; Liu L; Gao F
    Biosens Bioelectron; 2012; 38(1):239-44. PubMed ID: 22721646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a high analytical performance-xanthine biosensor based on layered double hydroxides modified-electrode and investigation of the inhibitory effect by allopurinol.
    Shan D; Wang Y; Zhu M; Xue H; Cosnier S; Wang C
    Biosens Bioelectron; 2009 Jan; 24(5):1171-6. PubMed ID: 18760589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide-metal oxide enzyme modified electrode.
    Sethuraman V; Muthuraja P; Anandha Raj J; Manisankar P
    Biosens Bioelectron; 2016 Oct; 84():112-9. PubMed ID: 26751827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Horseradish peroxidase immobilization on carbon nanodots/CoFe layered double hydroxides: direct electrochemistry and hydrogen peroxide sensing.
    Wang Y; Wang Z; Rui Y; Li M
    Biosens Bioelectron; 2015 Feb; 64():57-62. PubMed ID: 25194796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific determination of As(V) by an acid phosphatase-polyphenol oxidase biosensor.
    Cosnier S; Mousty C; Cui X; Yang X; Dong S
    Anal Chem; 2006 Jul; 78(14):4985-9. PubMed ID: 16841921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Sonogel-Carbon materials as basis for development of enzyme biosensors for phenols and polyphenols monitoring: a detailed comparative study of three immobilization matrixes.
    El Kaoutit M; Naranjo-Rodriguez I; Temsamani KR; Hidalgo-Hidalgo de Cisneros JL
    Biosens Bioelectron; 2007 Jun; 22(12):2958-66. PubMed ID: 17215118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of polyphenol oxidase in conducting copolymers and determination of phenolic compounds in wines with enzyme electrodes.
    Kiralp S; Toppare L; Yağci Y
    Int J Biol Macromol; 2003 Nov; 33(1-3):37-41. PubMed ID: 14599582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HRP/[Zn-Cr-ABTS] redox clay-based biosensor: design and optimization for cyanide detection.
    Shan D; Cosnier S; Mousty C
    Biosens Bioelectron; 2004 Sep; 20(2):390-6. PubMed ID: 15308245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laccase immobilization on the electrode surface to design a biosensor for the detection of phenolic compound such as catechol.
    Nazari M; Kashanian S; Rafipour R
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 145():130-138. PubMed ID: 25770936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly sensitive electrochemical biosensor for phenol derivatives using a graphene oxide-modified tyrosinase electrode.
    Wang Y; Zhai F; Hasebe Y; Jia H; Zhang Z
    Bioelectrochemistry; 2018 Aug; 122():174-182. PubMed ID: 29656242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.