These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 14572058)

  • 1. Immobilized enzyme-linked DNA-hybridization assay with electrochemical detection for Cryptosporidium parvum hsp70 mRNA.
    Aguilar ZP; Fritsch I
    Anal Chem; 2003 Aug; 75(15):3890-7. PubMed ID: 14572058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small-volume detection of Plasmodium falciparum CSP gene using a 50-microm-diameter cavity with self-contained electrochemistry.
    Aguilar ZP
    Anal Chem; 2006 Feb; 78(4):1122-9. PubMed ID: 16478103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the viability of Cryptosporidium parvum oocysts with the induction ratio of hsp70 mRNA production in manure.
    Garcés-Sanchez G; Wilderer PA; Horn H; Munch JC; Lebuhn M
    J Microbiol Methods; 2013 Sep; 94(3):280-9. PubMed ID: 23747597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An assay combining cell culture with reverse transcriptase PCR to detect and determine the infectivity of waterborne Cryptosporidium parvum.
    Rochelle PA; Ferguson DM; Handojo TJ; De Leon R; Stewart MH; Wolfe RL
    Appl Environ Microbiol; 1997 May; 63(5):2029-37. PubMed ID: 9143132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relevance of Cryptosporidium parvum hsp70 mRNA amplification as a tool to discriminate between viable and dead oocysts.
    Gobet P; Toze S
    J Parasitol; 2001 Feb; 87(1):226-9. PubMed ID: 11227898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme-amplified electrochemical detection of DNA using electrocatalysis of ferrocenyl-tethered dendrimer.
    Kim E; Kim K; Yang H; Kim YT; Kwak J
    Anal Chem; 2003 Nov; 75(21):5665-72. PubMed ID: 14588003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of viable Cryptosporidium parvum in soil by reverse transcription-real-time PCR targeting hsp70 mRNA.
    Liang Z; Keeley A
    Appl Environ Microbiol; 2011 Sep; 77(18):6476-85. PubMed ID: 21803904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligonucleotide-gold nanoparticle networks for detection of Cryptosporidium parvum heat shock protein 70 mRNA.
    Javier DJ; Castellanos-Gonzalez A; Weigum SE; White AC; Richards-Kortum R
    J Clin Microbiol; 2009 Dec; 47(12):4060-6. PubMed ID: 19828740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time nucleic acid sequence-based amplification (NASBA) assay targeting MIC1 for detection of Cryptosporidium parvum and Cryptosporidium hominis oocysts.
    Hønsvall BK; Robertson LJ
    Exp Parasitol; 2017 Jan; 172():61-67. PubMed ID: 27998735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of viable Cryptosporidium parvum using DNA-modified liposomes in a microfluidic chip.
    Esch MB; Locascio LE; Tarlov MJ; Durst RA
    Anal Chem; 2001 Jul; 73(13):2952-8. PubMed ID: 11467540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Cryptosporidium parvum using oligonucleotide-tagged liposomes in a competitive assay format.
    Esch MB; Baeumner AJ; Durst RA
    Anal Chem; 2001 Jul; 73(13):3162-7. PubMed ID: 11467568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genotyping Cryptosporidium parvum by single-strand conformation polymorphism analysis of ribosomal and heat shock gene regions.
    Gasser RB; Zhu X; Caccio S; Chalmers R; Widmer G; Morgan UM; Thompson RC; Pozio E; Browning GF
    Electrophoresis; 2001 Feb; 22(3):433-7. PubMed ID: 11258751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PMMA biosensor for nucleic acids with integrated mixer and electrochemical detection.
    Nugen SR; Asiello PJ; Connelly JT; Baeumner AJ
    Biosens Bioelectron; 2009 Apr; 24(8):2428-33. PubMed ID: 19168346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotyping Cryptosporidium parvum with an hsp70 single-nucleotide polymorphism microarray.
    Straub TM; Daly DS; Wunshel S; Rochelle PA; DeLeon R; Chandler DP
    Appl Environ Microbiol; 2002 Apr; 68(4):1817-26. PubMed ID: 11916701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct comparison of selected methods for genetic categorisation of Cryptosporidium parvum and Cryptosporidium hominis species.
    Chalmers RM; Ferguson C; Cacciò S; Gasser RB; Abs EL-Osta YG; Heijnen L; Xiao L; Elwin K; Hadfield S; Sinclair M; Stevens M
    Int J Parasitol; 2005 Apr; 35(4):397-410. PubMed ID: 15777916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro expression of mRNA coding for a Cryptosporidium parvum oocyst wall protein.
    Mead JR; Bonafonte MT; Arrowood MJ; Schinazi RF
    J Eukaryot Microbiol; 1996; 43(5):84S-85S. PubMed ID: 8822876
    [No Abstract]   [Full Text] [Related]  

  • 17. PCR cloning and nucleotide sequence determination of the 18S rRNA genes and internal transcribed spacer 1 of the protozoan parasites Cryptosporidium parvum and Cryptosporidium muris.
    Cai J; Collins MD; McDonald V; Thompson DE
    Biochim Biophys Acta; 1992 Jul; 1131(3):317-20. PubMed ID: 1627648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunolocation and enzyme activity analysis of Cryptosporidium parvum enolase.
    Mi R; Yang X; Huang Y; Cheng L; Lu K; Han X; Chen Z
    Parasit Vectors; 2017 May; 10(1):273. PubMed ID: 28569179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical detection of DNA hybridization using biometallization.
    Hwang S; Kim E; Kwak J
    Anal Chem; 2005 Jan; 77(2):579-84. PubMed ID: 15649056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of two methods for quantification of hsp70 mRNA from the waterborne pathogen Cryptosporidium parvum by reverse transcription real-time PCR in environmental samples.
    Garcés-Sanchez G; Wilderer PA; Munch JC; Horn H; Lebuhn M
    Water Res; 2009 Jun; 43(10):2669-78. PubMed ID: 19401258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.