These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 14572101)

  • 1. Characterization of gaseous and solid product from thermal plasma pyrolysis of waste rubber.
    Huang H; Tang L; Wu CZ
    Environ Sci Technol; 2003 Oct; 37(19):4463-7. PubMed ID: 14572101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon black recovery from waste tire pyrolysis by demineralization: Production and application in rubber compounding.
    Martínez JD; Cardona-Uribe N; Murillo R; García T; López JM
    Waste Manag; 2019 Feb; 85():574-584. PubMed ID: 30803613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replacing commercial carbon black by pyrolytic residue from waste tire for tire processing: Technically feasible and economically reasonable.
    Xu J; Yu J; He W; Huang J; Xu J; Li G
    Sci Total Environ; 2021 Nov; 793():148597. PubMed ID: 34182453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) mitigation in the pyrolysis process of waste tires using CO₂ as a reaction medium.
    Kwon EE; Oh JI; Kim KH
    J Environ Manage; 2015 Sep; 160():306-11. PubMed ID: 26117814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of carbon black from waste tire in continuous commercial rotary kiln pyrolysis reactor.
    Xu J; Yu J; He W; Huang J; Xu J; Li G
    Sci Total Environ; 2021 Jun; 772():145507. PubMed ID: 33770869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fundamental understanding of the thermal degradation mechanisms of waste tires and their air pollutant generation in a N2 atmosphere.
    Kwon E; Castaldi MJ
    Environ Sci Technol; 2009 Aug; 43(15):5996-6002. PubMed ID: 19731709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface functional characteristics (C, O, S) of waste tire-derived carbon black before and after steam activation.
    Lin HY; Chen WC; Yuan CS; Hung CH
    J Air Waste Manag Assoc; 2008 Jan; 58(1):78-84. PubMed ID: 18236797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decomposition of benzene in the RF plasma environment. Part I. Formation of gaseous products and carbon depositions.
    Shih SI; Lin TC; Shih M
    J Hazard Mater; 2004 Dec; 116(3):239-48. PubMed ID: 15601617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wet compounding with pyrolytic carbon black from waste tyre for manufacture of new tyre - A mini review.
    Xu J; Yu J; He W; Huang J; Xu J; Li G
    Waste Manag Res; 2021 Dec; 39(12):1440-1450. PubMed ID: 33860697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of the characteristics of carbonaceous material obtained via single-staged steam pyrolysis of waste tires.
    Larionov KB; Slyusarskiy KV; Ivanov AA; Mishakov IV; Pak AY; Jankovsky SA; Stoyanovskii VO; Vedyagin AA; Gubin VE
    J Air Waste Manag Assoc; 2022 Feb; 72(2):161-175. PubMed ID: 34846272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upgrading pyrolytic residue from waste tires to commercial carbon black.
    Zhang X; Li H; Cao Q; Jin L; Wang F
    Waste Manag Res; 2018 May; 36(5):436-444. PubMed ID: 29589516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies of the thermal degradation of waste rubber.
    Chen F; Qian J
    Waste Manag; 2003; 23(6):463-7. PubMed ID: 12909087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of fuel gas products from the treatment of solid waste streams with a plasma arc torch.
    Vaidyanathan A; Mulholland J; Ryu J; Smith MS; Circeo LJ
    J Environ Manage; 2007 Jan; 82(1):77-82. PubMed ID: 16563605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation on pyrolysis and incineration of chrome-tanned solid waste from tanneries for effective treatment and disposal: an experimental study.
    Velusamy M; Chakali B; Ganesan S; Tinwala F; Shanmugham Venkatachalam S
    Environ Sci Pollut Res Int; 2020 Aug; 27(24):29778-29790. PubMed ID: 31884540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vacuum pyrolysis of waste tires with basic additives.
    Zhang X; Wang T; Ma L; Chang J
    Waste Manag; 2008 Nov; 28(11):2301-10. PubMed ID: 18162390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermolysis of scrap tire and rubber in sub/super-critical water.
    Li Q; Li F; Meng A; Tan Z; Zhang Y
    Waste Manag; 2018 Jan; 71():311-319. PubMed ID: 29102354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporating the recovered carbon black produced in an industrial-scale waste tire pyrolysis plant into a natural rubber formulation.
    Urrego-Yepes W; Cardona-Uribe N; Vargas-Isaza CA; Martínez JD
    J Environ Manage; 2021 Jun; 287():112292. PubMed ID: 33690014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of scrap tyre pyrolysis under vacuum conditions.
    Lopez G; Aguado R; Olazar M; Arabiourrutia M; Bilbao J
    Waste Manag; 2009 Oct; 29(10):2649-55. PubMed ID: 19589669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete study of the pyrolysis and gasification of scrap tires in a pilot plant reactor.
    Conesa JA; Martín-Gullón I; Font R; Jauhiainen J
    Environ Sci Technol; 2004 Jun; 38(11):3189-94. PubMed ID: 15224754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrolysis characteristics of integrated circuit boards at various particle sizes and temperatures.
    Chiang HL; Lin KH; Lai MH; Chen TC; Ma SY
    J Hazard Mater; 2007 Oct; 149(1):151-9. PubMed ID: 17467900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.