BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 14572121)

  • 1. Waking quantitative electroencephalogram and auditory event-related potentials following experimentally induced sleep fragmentation.
    Cote KA; Milner CE; Osip SL; Ray LB; Baxter KD
    Sleep; 2003 Sep; 26(6):687-94. PubMed ID: 14572121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CNS arousal and neurobehavioral performance in a short-term sleep restriction paradigm.
    Cote KA; Milner CE; Smith BA; Aubin AJ; Greason TA; Cuthbert BP; Wiebe S; Duffus SE
    J Sleep Res; 2009 Sep; 18(3):291-303. PubMed ID: 19552702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluctuation of waking electroencephalogram and subjective alertness during a 25-hour sleep-deprivation episode in young and middle-aged subjects.
    Drapeau C; Carrier J
    Sleep; 2004 Feb; 27(1):55-60. PubMed ID: 14998238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation.
    Van Dongen HP; Maislin G; Mullington JM; Dinges DF
    Sleep; 2003 Mar; 26(2):117-26. PubMed ID: 12683469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of experimental sleep fragmentation on error monitoring.
    Ko CH; Fang YW; Tsai LL; Hsieh S
    Biol Psychol; 2015 Jan; 104():163-72. PubMed ID: 25541514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurobehavioral consequences of arousals.
    Chugh DK; Weaver TE; Dinges DF
    Sleep; 1996 Dec; 19(10 Suppl):S198-201. PubMed ID: 9085510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased production of evoked and spontaneous K-complexes following a night of fragmented sleep.
    Nicholas CL; Trinder J; Colrain IM
    Sleep; 2002 Dec; 25(8):882-7. PubMed ID: 12489895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological arousal and attention during a week of continuous sleep restriction.
    Cote KA; Milner CE; Osip SL; Baker ML; Cuthbert BP
    Physiol Behav; 2008 Oct; 95(3):353-64. PubMed ID: 18655799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociating effects of global SWS disruption and healthy aging on waking performance and daytime sleepiness.
    Groeger JA; Stanley N; Deacon S; Dijk DJ
    Sleep; 2014 Jun; 37(6):1127-42. PubMed ID: 24882908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Sleep fragmentation as the cause of daytime sleepiness and reduced performance].
    Bonnet MH
    Wien Med Wochenschr; 1996; 146(13-14):332-4. PubMed ID: 9012173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain processing of stimulus deviance during slow-wave and paradoxical sleep: a study of human auditory evoked responses using the oddball paradigm.
    Bastuji H; García-Larrea L; Franc C; Mauguière F
    J Clin Neurophysiol; 1995 Mar; 12(2):155-67. PubMed ID: 7797630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Event-related potentials during forced awakening: a tool for the study of acute sleep inertia.
    Bastuji H; Perrin F; Garcia-Larrea L
    J Sleep Res; 2003 Sep; 12(3):189-206. PubMed ID: 12941058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Daytime exposure to bright light, as compared to dim light, decreases sleepiness and improves psychomotor vigilance performance.
    Phipps-Nelson J; Redman JR; Dijk DJ; Rajaratnam SM
    Sleep; 2003 Sep; 26(6):695-700. PubMed ID: 14572122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory information processing in sleep: late cortical potentials in an oddball paradigm.
    Van Sweden B; Van Dijk JG; Caekebeke JF
    Neuropsychobiology; 1994; 29(3):152-6. PubMed ID: 8022535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of sleep fragmentation on cognitive processing using computerized topographic brain mapping.
    Kingshott RN; Cosway RJ; Deary IJ; Douglas NJ
    J Sleep Res; 2000 Dec; 9(4):353-7. PubMed ID: 11386203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related changes in the time course of vigilant attention during 40 hours without sleep in men.
    Adam M; Rétey JV; Khatami R; Landolt HP
    Sleep; 2006 Jan; 29(1):55-7. PubMed ID: 16453981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of sleep deprivation on spontaneous arousals in humans.
    Sforza E; Chapotot F; Pigeau R; Paul PN; Buguet A
    Sleep; 2004 Sep; 27(6):1068-75. PubMed ID: 15532200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental sleep fragmentation.
    Roehrs T; Merlotti L; Petrucelli N; Stepanski E; Roth T
    Sleep; 1994 Aug; 17(5):438-43. PubMed ID: 7991955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of evoked potentials in sleep research.
    Colrain IM; Campbell KB
    Sleep Med Rev; 2007 Aug; 11(4):277-93. PubMed ID: 17628317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mood, alertness, and performance in response to sleep deprivation and recovery sleep in experienced shiftworkers versus non-shiftworkers.
    Wehrens SM; Hampton SM; Kerkhofs M; Skene DJ
    Chronobiol Int; 2012 Jun; 29(5):537-48. PubMed ID: 22621349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.