BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 14572631)

  • 1. Novel types of two-domain multi-copper oxidases: possible missing links in the evolution.
    Nakamura K; Kawabata T; Yura K; Go N
    FEBS Lett; 2003 Oct; 553(3):239-44. PubMed ID: 14572631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acid sequence of nitrite reductase: a copper protein from Achromobacter cycloclastes.
    Fenderson FF; Kumar S; Adman ET; Liu MY; Payne WJ; LeGall J
    Biochemistry; 1991 Jul; 30(29):7180-5. PubMed ID: 1830217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationships.
    Messerschmidt A; Huber R
    Eur J Biochem; 1990 Jan; 187(2):341-52. PubMed ID: 2404764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proposed structure of the A domains of factor VIII by homology modelling.
    Pan Y; DeFay T; Gitschier J; Cohen FE
    Nat Struct Biol; 1995 Sep; 2(9):740-4. PubMed ID: 7552743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures of the Met148Leu and Ser86Asp mutants of rusticyanin from Thiobacillus ferrooxidans: insights into the structural relationship with the cupredoxins and the multi copper proteins.
    Kanbi LD; Antonyuk S; Hough MA; Hall JF; Dodd FE; Hasnain SS
    J Mol Biol; 2002 Jul; 320(2):263-75. PubMed ID: 12079384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of a two-domain multicopper oxidase: implications for the evolution of multicopper blue proteins.
    Lawton TJ; Sayavedra-Soto LA; Arp DJ; Rosenzweig AC
    J Biol Chem; 2009 Apr; 284(15):10174-80. PubMed ID: 19224923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure of the small laccase from Streptomyces coelicolor reveals a link between laccases and nitrite reductases.
    Skálová T; Dohnálek J; Østergaard LH; Østergaard PR; Kolenko P; Dusková J; Stepánková A; Hasek J
    J Mol Biol; 2009 Jan; 385(4):1165-78. PubMed ID: 19063896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multicopper oxidases: modular structure, sequence space, and evolutionary relationships.
    Gräff M; Buchholz PCF; Le Roes-Hill M; Pleiss J
    Proteins; 2020 Oct; 88(10):1329-1339. PubMed ID: 32447824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning and nucleotide sequence of full-length cDNA for ascorbate oxidase from cultured pumpkin cells.
    Esaka M; Hattori T; Fujisawa K; Sakajo S; Asahi T
    Eur J Biochem; 1990 Aug; 191(3):537-41. PubMed ID: 2143984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition dynamics of trinuclear copper cluster and associated histidine residues through conserved or semi-conserved water molecules in human Ceruloplasmin: The involvement of aspartic and glutamic acid gates.
    Mukhopadhyay BP
    J Biomol Struct Dyn; 2018 Nov; 36(14):3829-3842. PubMed ID: 29148316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary structure of cucumber (Cucumis sativus) ascorbate oxidase deduced from cDNA sequence: homology with blue copper proteins and tissue-specific expression.
    Ohkawa J; Okada N; Shinmyo A; Takano M
    Proc Natl Acad Sci U S A; 1989 Feb; 86(4):1239-43. PubMed ID: 2919172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel scenario for the evolution of haem-copper oxygen reductases.
    Pereira MM; Santana M; Teixeira M
    Biochim Biophys Acta; 2001 Jun; 1505(2-3):185-208. PubMed ID: 11334784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural comparison of cupredoxin domains: domain recycling to construct proteins with novel functions.
    Murphy ME; Lindley PF; Adman ET
    Protein Sci; 1997 Apr; 6(4):761-70. PubMed ID: 9098885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The intramolecular electron transfer between copper sites of nitrite reductase: a comparison with ascorbate oxidase.
    Farver O; Eady RR; Abraham ZH; Pecht I
    FEBS Lett; 1998 Oct; 436(2):239-42. PubMed ID: 9781686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Function and molecular evolution of multicopper blue proteins.
    Nakamura K; GO N
    Cell Mol Life Sci; 2005 Sep; 62(18):2050-66. PubMed ID: 16091847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homology modeling of the multicopper oxidase Fet3 gives new insights in the mechanism of iron transport in yeast.
    di Patti MC; Pascarella S; Catalucci D; Calabrese L
    Protein Eng; 1999 Nov; 12(11):895-7. PubMed ID: 10585494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase.
    Sakurai T; Kataoka K
    Chem Rec; 2007; 7(4):220-9. PubMed ID: 17663447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Azide binding to the trinuclear copper center in laccase and ascorbate oxidase.
    Gromov I; Marchesini A; Farver O; Pecht I; Goldfarb D
    Eur J Biochem; 1999 Dec; 266(3):820-30. PubMed ID: 10583375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the soluble domain of the major anaerobically induced outer membrane protein (AniA) from pathogenic Neisseria: a new class of copper-containing nitrite reductases.
    Boulanger MJ; Murphy ME
    J Mol Biol; 2002 Feb; 315(5):1111-27. PubMed ID: 11827480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the human hephaestin gene and protein: comparative modelling of the N-terminus ecto-domain based upon ceruloplasmin.
    Syed BA; Beaumont NJ; Patel A; Naylor CE; Bayele HK; Joannou CL; Rowe PS; Evans RW; Srai SK
    Protein Eng; 2002 Mar; 15(3):205-14. PubMed ID: 11932491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.