BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 14572631)

  • 21. Evolutionary relationships among copper proteins containing coupled binuclear copper sites.
    Lerch K; Germann UA
    Prog Clin Biol Res; 1988; 274():331-48. PubMed ID: 3136463
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and functional characterisation of multi-copper oxidase CueO from lignin-degrading bacterium Ochrobactrum sp. reveal its activity towards lignin model compounds and lignosulfonate.
    Granja-Travez RS; Wilkinson RC; Persinoti GF; Squina FM; Fülöp V; Bugg TDH
    FEBS J; 2018 May; 285(9):1684-1700. PubMed ID: 29575798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FET3P, ceruloplasmin, and the role of copper in iron metabolism.
    Kosman DJ
    Adv Protein Chem; 2002; 60():221-69. PubMed ID: 12418179
    [No Abstract]   [Full Text] [Related]  

  • 24. Characterization of two type 1 Cu sites of Hyphomicrobium denitrificans nitrite reductase: a new class of copper-containing nitrite reductases.
    Yamaguchi K; Kataoka K; Kobayashi M; Itoh K; Fukui A; Suzuki S
    Biochemistry; 2004 Nov; 43(44):14180-8. PubMed ID: 15518568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli.
    Grass G; Rensing C
    Biochem Biophys Res Commun; 2001 Sep; 286(5):902-8. PubMed ID: 11527384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ceruloplasmin, a moonlighting protein in fish.
    Das S; Sahoo PK
    Fish Shellfish Immunol; 2018 Nov; 82():460-468. PubMed ID: 30144565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A structure-derived sequence pattern for the detection of type I copper binding domains in distantly related proteins.
    Ouzounis C; Sander C
    FEBS Lett; 1991 Feb; 279(1):73-8. PubMed ID: 1995346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation and structural analysis of the laccase gene from the lignin-degrading fungus Phlebia radiata.
    Saloheimo M; Niku-Paavola ML; Knowles JK
    J Gen Microbiol; 1991 Jul; 137(7):1537-44. PubMed ID: 1955850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The covalent structure of the blue copper-containing nitrite reductase from Achromobacter xylosoxidans.
    Vandenberghe IH; Meyer TE; Cusanovich MA; Van Beeumen JJ
    Biochem Biophys Res Commun; 1998 Jun; 247(3):734-40. PubMed ID: 9647763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and functional characterization of the Geobacillus copper nitrite reductase: involvement of the unique N-terminal region in the interprotein electron transfer with its redox partner.
    Fukuda Y; Koteishi H; Yoneda R; Tamada T; Takami H; Inoue T; Nojiri M
    Biochim Biophys Acta; 2014 Mar; 1837(3):396-405. PubMed ID: 24440558
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An X-ray crystallographic study of the binding sites of the azide inhibitor and organic substrates to ceruloplasmin, a multi-copper oxidase in the plasma.
    Zaitsev VN; Zaitseva I; Papiz M; Lindley PF
    J Biol Inorg Chem; 1999 Oct; 4(5):579-87. PubMed ID: 10550686
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolution of blue copper proteins.
    Rydén L
    Prog Clin Biol Res; 1988; 274():349-66. PubMed ID: 3043463
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase.
    Lee YA; Hendson M; Panopoulos NJ; Schroth MN
    J Bacteriol; 1994 Jan; 176(1):173-88. PubMed ID: 8282694
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolution of protein complexity: the blue copper-containing oxidases and related proteins.
    Rydén LG; Hunt LT
    J Mol Evol; 1993 Jan; 36(1):41-66. PubMed ID: 8433378
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional analysis of conserved aspartate and histidine residues located around the type 2 copper site of copper-containing nitrite reductase.
    Kataoka K; Furusawa H; Takagi K; Yamaguchi K; Suzuki S
    J Biochem; 2000 Feb; 127(2):345-50. PubMed ID: 10731703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. EPR spectra of type 3 copper centers in Rhus vernicifera laccase and Cucumis sativus ascorbate oxidase.
    Sakurai T; Takahashi J
    Biochim Biophys Acta; 1995 Apr; 1248(2):143-8. PubMed ID: 7748896
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural insights into the O2 reduction mechanism of multicopper oxidase.
    Komori H; Higuchi Y
    J Biochem; 2015 Oct; 158(4):293-8. PubMed ID: 26272825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Copper radical oxidases and related extracellular oxidoreductases of wood-decay Agaricomycetes.
    Kersten P; Cullen D
    Fungal Genet Biol; 2014 Nov; 72():124-130. PubMed ID: 24915038
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectroscopic analysis of the trinuclear cluster in the Fet3 protein from yeast, a multinuclear copper oxidase.
    Blackburn NJ; Ralle M; Hassett R; Kosman DJ
    Biochemistry; 2000 Mar; 39(9):2316-24. PubMed ID: 10694398
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel resting form of the trinuclear copper center in the double mutant of a multicopper oxidase, CueO, Cys500Ser/Glu506Ala.
    Kajikawa T; Sugiyama R; Kataoka K; Sakurai T
    J Inorg Biochem; 2015 Aug; 149():88-90. PubMed ID: 25840508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.