These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 14572663)

  • 1. Electrostatic interactions across the dimer-dimer interface contribute to the pH-dependent stability of a tetrameric malate dehydrogenase.
    Bjørk A; Mantzilas D; Sirevåg R; Eijsink VG
    FEBS Lett; 2003 Oct; 553(3):423-6. PubMed ID: 14572663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of a tetrameric malate dehydrogenase by introduction of a disulfide bridge at the dimer-dimer interface.
    Bjørk A; Dalhus B; Mantzilas D; Eijsink VG; Sirevåg R
    J Mol Biol; 2003 Dec; 334(4):811-21. PubMed ID: 14636605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for thermophilic protein stability: structures of thermophilic and mesophilic malate dehydrogenases.
    Dalhus B; Saarinen M; Sauer UH; Eklund P; Johansson K; Karlsson A; Ramaswamy S; Bjørk A; Synstad B; Naterstad K; Sirevåg R; Eklund H
    J Mol Biol; 2002 May; 318(3):707-21. PubMed ID: 12054817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large improvement in the thermal stability of a tetrameric malate dehydrogenase by single point mutations at the dimer-dimer interface.
    Bjørk A; Dalhus B; Mantzilas D; Sirevåg R; Eijsink VG
    J Mol Biol; 2004 Aug; 341(5):1215-26. PubMed ID: 15321717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetrameric malate dehydrogenase from a thermophilic Bacillus: cloning, sequence and overexpression of the gene encoding the enzyme and isolation and characterization of the recombinant enzyme.
    Wynne SA; Nicholls DJ; Scawen MD; Sundaram TK
    Biochem J; 1996 Jul; 317 ( Pt 1)(Pt 1):235-45. PubMed ID: 8694770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dimer contact area of sorghum NADP-malate dehydrogenase: role of aspartate 101 in dimer stability and catalytic activity.
    Schepens I; Decottignies P; Ruelland E; Johansson K; Miginiac-Maslow M
    FEBS Lett; 2000 Apr; 471(2-3):240-4. PubMed ID: 10767431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Malate dehydrogenase from the thermophilic green bacterium Chloroflexus aurantiacus: purification, molecular weight, amino acid composition, and partial amino acid sequence.
    Rolstad AK; Howland E; Sirevåg R
    J Bacteriol; 1988 Jul; 170(7):2947-53. PubMed ID: 3133356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Malate dehydrogenase from Chlorobium vibrioforme, Chlorobium tepidum, and Heliobacterium gestii: purification, characterization, and investigation of dinucleotide binding by dehydrogenases by use of empirical methods of protein sequence analysis.
    Charnock C; Refseth UH; Sirevåg R
    J Bacteriol; 1992 Feb; 174(4):1307-13. PubMed ID: 1735722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of engineered electrostatic interactions to the stability of cytosolic malate dehydrogenase.
    Trejo F; Gelpí JL; Ferrer A; Boronat A; Busquets M; Cortés A
    Protein Eng; 2001 Nov; 14(11):911-7. PubMed ID: 11742111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interface matters: the stiffness route to stability of a thermophilic tetrameric malate dehydrogenase.
    Kalimeri M; Girard E; Madern D; Sterpone F
    PLoS One; 2014; 9(12):e113895. PubMed ID: 25437494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the MJ0490 gene product of the hyperthermophilic archaebacterium Methanococcus jannaschii, a novel member of the lactate/malate family of dehydrogenases.
    Lee BI; Chang C; Cho SJ; Eom SH; Kim KK; Yu YG; Suh SW
    J Mol Biol; 2001 Apr; 307(5):1351-62. PubMed ID: 11292347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the molecular relationships between malate and lactate dehydrogenases: structural and biochemical properties of monomeric and dimeric intermediates of a mutant of tetrameric L-[LDH-like] malate dehydrogenase from the halophilic archaeon Haloarcula marismortui.
    Madern D; Ebel C; Mevarech M; Richard SB; Pfister C; Zaccai G
    Biochemistry; 2000 Feb; 39(5):1001-10. PubMed ID: 10653644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational stability of the N-terminal amino acid residues of mutated recombinant pigeon liver malic enzymes.
    Chou WY; Huang SM; Chang GG
    Protein Eng; 1998 May; 11(5):371-6. PubMed ID: 9681869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of metal binding on the structural stability of pigeon liver malic enzyme.
    Chang HC; Chou WY; Chang GG
    J Biol Chem; 2002 Feb; 277(7):4663-71. PubMed ID: 11739398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering the quaternary structure of an enzyme: construction and analysis of a monomeric form of malate dehydrogenase from Escherichia coli.
    Breiter DR; Resnik E; Banaszak LJ
    Protein Sci; 1994 Nov; 3(11):2023-32. PubMed ID: 7703849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional roles of the N-terminal amino acid residues in the Mn(II)-L-malate binding and subunit interactions of pigeon liver malic enzyme.
    Chou WY; Huang SM; Chang GG
    Protein Eng; 1997 Oct; 10(10):1205-11. PubMed ID: 9488145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determinants of protein thermostability observed in the 1.9-A crystal structure of malate dehydrogenase from the thermophilic bacterium Thermus flavus.
    Kelly CA; Nishiyama M; Ohnishi Y; Beppu T; Birktoft JJ
    Biochemistry; 1993 Apr; 32(15):3913-22. PubMed ID: 8471603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oligomeric forms of bacterial malate dehydrogenase: a study of the enzyme from the phototrophic non-sulfur bacterium Rhodovulum steppense A-20s.
    Eprintsev AT; Falaleeva MI; Lyashchenko MS; Toropygin IY; Igamberdiev AU
    Biosci Biotechnol Biochem; 2018 Jan; 82(1):81-89. PubMed ID: 29297253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADP(+)-malic enzyme from sugarcane leaves: structural properties studied by thermal inactivation.
    Iglesias AA; Spampinato CP; Andreo CS
    Arch Biochem Biophys; 1991 Nov; 290(2):272-6. PubMed ID: 1929396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability.
    Christodoulou E; Rypniewski WR; Vorgias CR
    Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.